
ibm.com/redbooks

Front cover

System Programmer’s
Guide to: Workload
Manager

Pierre Cassier
Annamaria Defendi

Dagmar Fischer
John Hutchinson

Alain Maneville
Gianfranco Membrini

Caleb Ong
Andrew Rowley

Workload Manager overview and
functionalities

How to classify your workloads

Best practices samples

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

System Programmer’s Guide to: Workload Manager

March 2008

SG24-6472-03

© Copyright International Business Machines Corporation 2005, 2006, 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Forth Edition (March 2008)

This edition applies to Version 1, Release 8 of z/OS (product number 5694-A01).

Note: Before using this information and the product it supports, read the information in “Notices” on
page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
The team that wrote this redbook. xiii
Become a published author . xiv
Comments welcome. .xv

Chapter 1. Introduction. 1
1.1 Introduction to workload management . 2

1.1.1 Basic concepts . 2
1.1.2 Service Level Agreement . 6

1.2 Workload Manager components . 7
1.2.1 Service definition and service policies . 8
1.2.2 Workload classification . 9
1.2.3 Service classes . 10
1.2.4 Importance of a goal . 12
1.2.5 Resource Group . 12
1.2.6 Application Environment . 13
1.2.7 Scheduling environment . 14
1.2.8 Sampling dispatchable unit states . 14

1.3 Performance management metrics . 15
Average transaction response time . 15
External throughput rate (ETR) . 17
Resource utilization . 18
Saturation design point (SDP) . 19

1.3.1 Processor performance metrics . 20
CPU time . 20
Cycle time . 21
Millions of instructions per second (MIPS). 21
MFLOPS . 21
CPU Service Units: System Resource Manager (SRM) constant 22
Internal throughput rate (ITR) . 22
Large Systems Performance Reference (LSPR) . 23

1.3.2 I/O performance and metrics. 25

Chapter 2. How WLM works . 29
2.1 Workload management . 30
2.2 z/OS dispatchable units (DUs) . 30

WLM Business Unit of Work . 31
The idea of dispatchable units . 32
Enclave . 34

2.3 Understanding the algorithms . 35
Workload management . 35

2.3.1 Performance index . 36
Sysplex PI and local PI . 36
Performance index evaluation in a sysplex . 37

2.3.2 Policy adjustment function . 40
Impact of the number of service class periods. 42
© Copyright IBM Corp. 2005, 2006, 2007. All rights reserved. iii

Donor and receiver determination . 43
Selecting a receiver candidate. 45
Find a receiver bottleneck . 45

2.3.3 CPU management . 46
Dispatching priorities assignment . 47
Discretionary goals . 50

2.3.4 Swap control . 51
Swap protect time . 51

2.3.5 Storage targets . 51
2.3.6 I/O management . 52

I/O queues . 52
DASD I/O priority . 53
TAPE I/O priority . 53
Sysplex I/O priority management. 53
I/O priority management decisions . 54
Channel subsystem I/O priority queuing (CSS IOPQ) . 54
Dynamic Channel Path Management (DCM). 55
Parallel Access Volumes (PAV). 55

2.4 Transactions and management. 61
2.4.1 How WLM treats work in the system. 61
2.4.2 Enclave management . 64

Classification . 64
Application Environment enclave server . 64
Application Environment enclave server topology . 64

2.4.3 Execution delay monitoring. 65
Monitoring environment or performance block (PB) . 66
Services . 66
Server topology . 67
Server management . 71
Transaction phase . 71
Summary . 73

Chapter 3. WLM functions . 75
3.1 Protecting work . 76

3.1.1 Resource Groups . 76
Types of Resource Groups . 76
Defining Resource Groups. 77
Resource Group maximum management . 78
Service ramps up. 80
RMF reporting . 81
Resource Group usage examples . 82

3.1.2 CPU critical . 85
CPU CRITICAL . 86
CPU CRITICAL in action . 86
Who should use CPU CRITICAL . 87
Where to specify CPU CRITICAL . 87

3.1.3 Storage critical . 88
Who should use STORAGE CRITICAL . 88
Where to specify STORAGE CRITICAL . 88

3.1.4 Initiator dispatch priority . 90
Initiator behavior . 90

3.1.5 WLM CPU preemption . 90
3.1.6 ENQ management . 90

3.2 Server address space management . 91
3.2.1 Application Environment . 92
iv System Programmer’s Guide to: Workload Manager

Application Environment queues . 93
Transaction flow in an Application Environment . 93
Application Environment and transaction flow example. 93

3.3 Workload routing support . 95
3.3.1 VTAM generic resources. 95

VTAM exit customization . 96
3.3.2 Sysplex routing . 97

Calculation of server weight. 98
Sysplex routing user: z/OS Load Balancing Advisor . 99
Sysplex routing user: DB2 Connect . 100

3.4 Soft capping . 101
3.4.1 Defined capacity . 101
3.4.2 Group capacity . 102

3.5 Intelligent Resource Director . 102
Policy considerations for IRD. 103
Importance and goal of a service class . 103
Minimum number of logical processors . 103

3.5.1 Linux for System z LPAR management . 103
Setting the cluster name . 103
Setting the system name . 103
Setting the goal . 104

3.6 Specialty processors . 104
3.6.1 Internal Coupling Facility Processor (ICF) . 105
3.6.2 Integrated Facility for Linux Processor (IFL) . 105
3.6.3 zSeries Application Assist Processor (zAAP) . 106

zSeries Application Assist Processor and Java code flow. 106
3.6.4 zSeries Application Assist Processor positioning . 107
3.6.5 WLM zAAP DUs states . 108
3.6.6 z9 Integrated Information Processor (zIIP) . 109

z9 Integrated Information Processor and DB2 code flow. 109
3.6.7 z9 Integrated Information Processor positioning. 110
3.6.8 WLM zIIP DU states . 110

Chapter 4. Implementation and workload classifications . 113
4.1 Overview . 114
4.2 WLM implementation . 114

4.2.1 IEAOPTxx usage . 114
4.2.2 WLM ISPF application . 119

Security access . 119
Starting your WLM ISPF application . 120

4.2.3 WLM couple data set management . 121
Allocating the WLM couple data set. 121
Managing your WLM CDS . 122

4.2.4 Specifying your service definition . 123
4.2.5 Service policy definition . 126
4.2.6 Workload specification . 126
4.2.7 Resource Group specification. 127
4.2.8 Working with service classes . 128
4.2.9 Classification rules . 129
4.2.10 Service definition coefficient . 138
4.2.11 Report class . 139
4.2.12 Application Environment . 140
4.2.13 Scheduling environment . 141
4.2.14 Policy overrides. 142
 Contents v

4.2.15 How to use policy overrides . 143
Adding and removing a Resource Group. 143
Overriding a Resource Group definition. 146

4.2.16 Evaluating your SMF records . 149
4.2.17 Installing and activating your service definition. 150

4.3 Current WLM users upgrading to a new OS . 151
4.3.1 WLM compatibility and coexistence . 151
4.3.2 WLM enhancements matrix . 152

4.4 WLM tools . 153
4.4.1 Service Definition Formatter . 153
4.4.2 WLM Work Queue Viewer. 153
4.4.3 WLM Service Definition Editor . 154

Getting started . 155

Chapter 5. Setting goals . 167
5.1 Using service classes . 168
5.2 Defining and maintaining service goals. 169

5.2.1 Using historical data to set goals . 170
5.2.2 Using response time goals . 172
5.2.3 Using response time goals for CICS and IMS. 174
5.2.4 Using execution velocity goals . 176

Considerations for using velocity goals . 177
5.2.5 Using the SYSSTC service class . 178
5.2.6 Using service class periods. 179
5.2.7 Using importance levels . 180
5.2.8 Using discretionary goals . 182

When discretionary work receives too little service . 183
Capping overachieving work . 183

5.2.9 Using report classes . 183
5.2.10 Using Resource Groups . 184
5.2.11 Using CPU and storage critical . 185

5.3 Managing service definitions. 186
5.3.1 Revisiting service definitions. 187
5.3.2 Reevaluating service definition . 187
5.3.3 When things are not working . 187

Chapter 6. Batch considerations . 191
6.1 General considerations . 192

6.1.1 WLM-managed initiators . 192
How WLM batch initiator management works . 192
JES2 service class management. 194
Jobs with system affinity . 195
Considerations for multiple JES2 MAS complexes in a sysplex 195
Operational changes . 196

6.1.2 Scheduling environment . 197
6.1.3 TWS integration with WLM . 197

Implementation tasks . 200
6.2 Types of goals . 203

6.2.1 Response time goal . 203
Good candidates for this type of goal . 204

6.2.2 Velocity goal . 204
Good candidates for this type of goal . 204

6.3 Classification rules . 204
Classification . 205
vi System Programmer’s Guide to: Workload Manager

6.4 Best practices . 206
6.4.1 WLM-managed initiators . 206

Fragmentation . 206
Balancing . 207
JES2 parameter . 207

6.4.2 Quiescing a batch job . 208
6.4.3 Choosing the right velocity . 208

Test case . 208
6.4.4 Usage and number of periods. 210

6.5 Resource Group usage . 210
6.5.1 First test case . 211
6.5.2 Second test case . 211

6.6 Impact of the number of engines on velocity. 212
6.6.1 First case results . 212
6.6.2 Second case results . 213

Chapter 7. TSO, STC, and APPC workloads . 217
7.1 General considerations for TSO . 218
7.2 Types of goals for TSO . 218
7.3 Best practices for TSO . 220
7.4 Classification rules for TSO. 220
7.5 Reporting for TSO . 221
7.6 General considerations for STC . 224

SYSTEM service class. 224
SYSSTC service class . 225

7.7 Classification rules for STC. 226
7.8 Types of goals for STC . 227
7.9 Best practices for STC . 227
7.10 Reporting for STC . 229
7.11 General considerations for APPC . 230
7.12 Classification rules for APPC . 230
7.13 Types of goals for APPC. 231
7.14 Best practices for APPC . 231
7.15 Reporting for APPC. 231

Chapter 8. DB2 workload considerations . 233
8.1 General considerations . 234
8.2 DB2 address spaces . 234

8.2.1 DB2 address space velocity goals . 234
8.2.2 WLM bufferpool management. 235
8.2.3 How DB2 assigns I/O priorities . 235

8.3 DB2 distributed environment . 236
8.3.1 Thread and enclave relationship . 236
8.3.2 Duration of an enclave . 236
8.3.3 DDF enclave creation . 237
8.3.4 Classification rules for a distributed environment . 238

Considerations for JDBC requests. 239
8.3.5 Types of goal . 239
8.3.6 Best practices . 240
8.3.7 Enclave reporting . 240

8.4 DB2 Stored Procedures . 242
8.4.1 What are stored procedures . 242
8.4.2 WLM considerations for DB2 Stored Procedures . 245

Considerations for enforcing WLM goals . 246
 Contents vii

8.4.3 WLM definition for DB2 Stored Procedures . 246
Using WLM-established address spaces. 246
Define your classification rules . 250
Defining your service classes . 251
Performance goals for the server address spaces . 251

8.5 DB2 sysplex query parallelism . 251
8.5.1 Query parallelism . 251
8.5.2 How sysplex query parallelism works . 252
8.5.3 WLM considerations for sysplex query parallelism . 253
8.5.4 WLM definition for sysplex query parallelism . 254

Classification rules . 254
Types of goals . 256

Chapter 9. WebSphere Application Server workload considerations 257
9.1 General considerations . 258
9.2 WebSphere on z/OS and WLM. 259

9.2.1 Queuing services . 259
WLM temporal affinity . 260

9.2.2 Enclaves . 261
9.2.3 Application Environments . 261

9.3 Classifications rules . 263
9.3.1 Classification rules for STC subsystem. 264
9.3.2 Classification rules for CB subsystem. 265

Assigning transaction classes . 266
9.4 Types of goals . 279
9.5 Reporting. 279

Chapter 10. UNIX System Services considerations . 283
10.1 General considerations . 284

10.1.1 Unix System Services terminology . 284
10.1.2 Unix System Services address spaces. 284
10.1.3 USS and WLM . 286

UNIX Services fork and spawn function calls . 286
Fork, spawn, and enclave propagation . 288

10.2 Controlling the performance of your USS work . 289
10.2.1 Types of goals and classification rules . 290

Definitions for USS started tasks . 290
Definitions for OMVS subsystem type work. 290
OMVS and TSO/E response time . 292

10.2.2 Control using UNIX functions . 293
10.3 Reporting. 293

SDSF Processes panel . 293
RMF III OPD . 294
RMF Postprocessor . 295

Chapter 11. Transactional workload considerations . 297
11.1 General considerations for CICS . 298
11.2 Types of goals. 298

11.2.1 Region management goal . 299
CPU and storage-critical assignment in region management mode 299
Service class reporting in region management mode . 300

11.2.2 Transaction response time management . 300
CPU and storage-critical assignment in transaction management mode 302

11.3 Classification rules . 303
viii System Programmer’s Guide to: Workload Manager

11.4 CPU contention considerations. 303
11.4.1 CICS and batch jobs contention analysis . 304
11.4.2 CICS regions contention analysis . 306
11.4.3 CICS response time contention analysis . 307
11.4.4 Contention analysis summary. 307

11.5 Reporting. 307
11.5.1 Reporting enhancement . 307

Service definition used for this test . 308

Chapter 12. Uniprocessor considerations . 311
12.1 CPU contention in a uniprocessor system . 312

12.1.1 Dispatching priorities. 312
12.1.2 Test case . 313

Test one: Very high goals . 314
Test two: Reduced goals . 315
Test three: Discretionary work . 316
Test four: The effect of goals on capping. 317
Test five: Resource Groups . 318
Conclusions . 319

12.2 Recommendations . 320
12.2.1 Number of service classes . 320
12.2.2 Goals. 320
12.2.3 SYSSTC . 320
12.2.4 CPU Critical . 321
12.2.5 Discretionary work. 321

Chapter 13. Enterprise Workload Manager . 323
13.1 Introduction to EWLM . 324

ARM-instrumented middleware . 325
13.1.1 EWLM and zWLM policies . 327
13.1.2 Platform support in EWLM 2.1 . 329

Domain managers . 329
Managed servers . 329
ARM-instrumented middleware . 329

13.2 Getting started. 329
13.2.1 How EWLM interfaces with z/OS . 330

13.3 Using the EWLM Control Center . 333
13.3.1 Monitoring the use of the EWLM Control Center . 336

Related publications . 341
IBM Redbooks . 341
Other publications . 341
Online resources . 341
How to get IBM Redbooks . 342
Help from IBM . 342

Index . 343
 Contents ix

x System Programmer’s Guide to: Workload Manager

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.
© Copyright IBM Corp. 2005, 2006, 2007. All rights reserved. xi

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ™
i5/OS®
z/Architecture®
z/OS®
z/VM®
zSeries®
z9™
AIX 5L™
AIX®
CICS®
Distributed Relational Database

Architecture™
Domino®
DB2 Connect™

DB2 Universal Database™
DB2®
DRDA®
Enterprise Storage Server®
ESCON®
FICON®
IBM®
IMS™
Lotus®
MQSeries®
MVS™
NetView®
OS/390®
OS/400®

Parallel Sysplex®
POWER5™
PR/SM™
Redbooks™
RACF®
RMF™
System z™
System z9™
SOM®
SOMobjects®
Tivoli®
VSE/ESA™
VTAM®
WebSphere®

The following terms are trademarks of other companies:

ABAP, SAP R/3, SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in
several other countries.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates.

EJB, Java, JDBC, JSP, JVM, J2EE, Solaris, Sun, Sun Microsystems, VSM, and all Java-based trademarks are
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
xii System Programmer’s Guide to: Workload Manager

Preface

This IBM® Redbook gives a broad understanding of the Workload Manager (WLM)
component of the z/OS® system. It also provides suggestions about how to classify the
different workloads to WLM so it can best manage the different types of units of work.

This book assumes that the starting environment is a z/Architecture® running a z/OS V1R8
level of operating system. For this reason, there are no references to components, for
example, expanded storage, compatibility mode, and so forth, that no longer exist.

This book also provides a brief introduction to the Enterprise Workload Manager and
describes the current interactions with z/OS WLM.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization, Poughkeepsie Center.

Pierre Cassier is a Certified IT Specialist working for IBM France in Integrated Technology
Services. He has more than 21 years of systems programming experience in mainframe
environments on MVS™, OS/390®, and z/OS platforms. His areas of expertise include z/OS,
Parallel Sysplex®, WLM, and performance tuning. He teaches WLM and Performance
Management courses.

Annamaria Defendi is an Advisory IT Specialist working for IBM Italy in Integrated
Technology Services. She has 15 years of experience in the MVS, Parallel Sysplex, and WLM
areas. Since 2001 she has been a member of the z/OS EMEA Back Office Team, providing
Level 2 support to the EMEA Clients. She teaches software courses on different MVS
components for clients and for IBM internal education.

Dagmar Fischer is an IT Specialist working at Informatik Zentrum (IZB) in Munich, Germany.
She has more than 22 years of experience in mainframe environments on MVS, OS/390, and
z/OS platforms.Her areas of expertise include Parallel Sysplex, WLM and performance tuning
issues, and capacity planning.

John Hutchinson (Hutch) is a Certified Senior Consulting IT Specialist at the Washington
Systems Center (WSC) in Gaithersburg, Maryland, where he is the Team Leader for the
WebSphere® for z/OS technical support group. He has over 36 years of experience with the
installation, migration, and management of large, complex MVS systems, complexes, and
networks. Hutch joined the WSC in 1976, and served as lead JES2 Technical Support leader,
consultant to NJE Protocol Review Board, and IBM Representative to JES2 Projects at the
GUIDE and SHARE user groups.

Alain Maneville is an IT Specialist working for IBM France in Field Technical Sales Support
for zSeries® and z/OS. He has more than 20 years of systems programming experience in
mainframe environments on MVS, OS/390, and z/OS platforms. Alain joined IBM in 2001 and
worked for 13 years as a Consultant System Engineer for Amdahl Corp. His areas of
expertise include zSeries hardware, z/OS, Parallel Sysplex, WLM and performance tuning,
and z/Architecture. He has been involved in migrations to WLM in various client
environments.
© Copyright IBM Corp. 2005, 2006, 2007. All rights reserved. xiii

Gianfranco Membrini is an Advisory IT Specialist working for IBM Italy in Integrated
Technology Services. He has 18 years of experience in MVS, OS/390, z/OS, WLM, and the
Parallel Sysplex environment. His areas of expertise include zSeries hardware configuration
and performance tuning.

Caleb Ong is an IT Specialist from IBM Philippines, Integrated Technology Services division.
He holds a degree in Electronics and Communication Engineering from the University of
Santo Tomas. He has been in the IT industry for more than 15 years.

Andrew Rowley has 14 years experience as a Systems Programmer on MVS, OS/390, and
z/OS. He is particularly interested in Workload Manager and z/OS performance. He is the
owner of Black Hill Software Pty. Ltd. located in Ballarat, Australia. The Web site is:

http://www.blackhillsoftware.com/zos

Thanks to the following people for their contributions to this project:

Paola Bari, Richard Conway, Bob Haimowitz
International Technical Support Organization, Poughkeepsie Center

Peter Baeuerle
IBM Germany

Laura Blodgett
IBM Poughkeepsie

Mike Cox
IBM Gaithersburg

Craig Day
IBM Poughkeepsie

Franco Meroni
IBM Italy

John Kinn
IBM Poughkeepsie

Alvaro Salla
Consultant

Pascal Tillard
IBM France

Robert Vaupel
IBM Germany

Dieter Wellerdiek
IBM Germany

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You'll team with IBM technical professionals, Business Partners and/or clients.
xiv System Programmer’s Guide to: Workload Manager

http://www.blackhillsoftware.com/zos

Your efforts will help increase product acceptance and customer satisfaction. As a bonus,
you'll develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments about this or
other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xvi System Programmer’s Guide to: Workload Manager

Chapter 1. Introduction

This chapter introduces the concept of workload management and provides a basic
description of the Workload Manager (WLM) z/OS component.

In this chapter, we discuss the following topics:

� Introduction to workload management

– Basic concepts
– Service Level Agreement (SLA)

� WLM components

– WLM application
– Workload classification
– Service definition and service policies
– Sampling units of work states
– Service classes
– Importance of a goal
– Resource Group
– Application Environment
– Scheduling environment

� Performance management metrics

1

© Copyright IBM Corp. 2005, 2006, 2007. All rights reserved. 1

1.1 Introduction to workload management
This section provides an introduction to the workload management concept, focusing on its
goals and the problems that it solves.

1.1.1 Basic concepts
One of the strengths of the zSeries platform and the z/OS operating system is the ability to
run multiple workloads at the same time within one z/OS image or across multiple images.
The function that makes this possible is dynamic workload management, which is
implemented in the Workload Manager component of the z/OS operating system.

The idea of z/OS Workload Manager is to make a contract between the installation (user) and
the operating system. The installation classifies the work running on the z/OS operating
system in distinct service classes and defines goals for them that express the expectation of
how the work should perform. WLM uses these goal definitions to manage the work across all
systems of a sysplex environment.

In order to understand how WLM works, we can look at the traffic in a city, as shown in
Figure 1-1 on page 3. Usually, when we drive a car between two locations, the time that we
need is determined by the constant speed we are allowed to go, the amount of traffic on the
streets, and the traffic regulations at crossings and intersections. Based on this, we can
already identify the time as the basic measure to go from a start to a destination point; we can
also easily understand that the amount of traffic is the determining factor of how fast we can
go between these two points. While the driving speed is usually regulated and very much
constant, the number of cars on the street determines how long we have to wait at
intersections and crossings before we can pass through them. As a result, we can identify the
crossings, traffic lights, and intersections as the points where we encounter delays on our
way through the city; a traffic management system can now use these considerations to
manage the running traffic. For example, dedicated lanes for busses and taxis allow them to
pass the waiting traffic during rush hours and therefore to travel faster than passenger cars.
This is a common model of prioritizing a certain type of vehicle against others in the traffic
systems. So far, we see that it is possible to use the time as a measure between two points
for driving in a city, we identified the points where contention might occur, and we found a
simple but efficient method of prioritizing and managing the traffic.
2 System Programmer’s Guide to: Workload Manager

Figure 1-1 Traffic management concepts

These concepts can be easily ported to a system; all we need is a technique to:

� Identify the work running in the system.
� Measure the time it runs.
� Find out the contention points.

The identification of work requests is supported by the middleware and the operating system;
they tell WLM when a new unit of work enters the system and when it leaves the system.
WLM provides constructs to separate the work into distinct classes. The name of this is work
classification, and it allows an installation to deal with different types of work running on the
system.

Contention occurs when the work wants to use the system resources. These are the CPUs,
the I/O devices, and storage, but also software constructs, such as processes or address
spaces, which provide the capability to execute programs and serialization points that allow
the programs to access resources or serialized control areas. WLM monitors these resources
to be able to understand how many resources the work requires or will wait for.

The work classification and WLM observation of how the work uses the resources provide the
base to manage the system. This management is done based on the goals that the
installation defines for the work. After classifying the work into distinct classes, the installation
associates a goal with each class; the goal determines how much service the work in the
class is able to receive. These classes of work are named service classes.

Beside the goal, it is also necessary to define which work is more important than other work.
In the case where several service classes do not achieve their target goals, the importance
helps WLM decide which service class it should help get resources.

Figure 1-2 on page 4 describes the WLM constructs used for performance management. In
the service policy, we have workloads. For each workload, we have service classes indicating
the goal and the importance of the associated work. Then, we have the classification rules to
link a workload to a service class, optionally the Resource Groups; and, in addition,

observations
samples
Chapter 1. Introduction 3

Application Environments and scheduling environments. In the next sections, we analyze
each component in detail.

Figure 1-2 WLM constructs

Now we have all the basic constructs to define a policy, but we have to clarify the goals of our
service classes. From the traffic example, we see that the most natural goal is the time that is
required for a car to go between two points. The same is true for work running in a system:
The time that the work needs between the points when it enters and leaves the system can
be used as a base to manage it. Because a system deals with many work requests running in
parallel, the time of an individual request becomes less important. The average time the work
needs to fulfill its task on the system is more interesting, because this is also the time the user
can observe while waiting for a response from the system. This time is named the Response
time.

As we will see later, the average response time can be influenced by very few long-running
transactions. In order to become more independent for such events, we want a more stable
goal definition. For example, we want a certain number of work requests to end within a
predefined time. Other work requests can run much longer, but we will consider the goal as
achieved when the defined number of requests ends in the expected time period. This goal is
named a percentile response time goal and defines the percentage of all work requests that
must end within a predefined time limit.

Using the time as a measure to manage the work on a system requires that the system has
the ability to capture it. Usually, an operating system provides processes and address spaces
to execute the application programs; these constructs are often started once and live for a
very long time. That means that WLM needs assistance from the middleware to capture the
response time. Indeed, WLM provides interfaces that capture the time the work needs when it
runs on z/OS. WLM also supports an infrastructure that allows the middleware to identify

WORKLOAD

WORKLOAD

WORKLOAD

Report
Class

Report
Class

SERVICE CLASS

GOAL 1 IMPORTANCE 1

Application
Envir.

Scheduling
Envir.

RESOURCE GROUP

RESOURCE GROUP

SERVICE POLICY

C
LA

S
S

IF
IC

A
T

IO
N

 R
U

LE
S

4 System Programmer’s Guide to: Workload Manager

individual work requests, capture their response times, and thus allow WLM to manage them
in their own service classes. Therefore, on z/OS, WLM is able to manage service classes of
transactions that belong to the same application and that are executed by a set of server
address spaces.

At this point, the question that arises is what the system can do when it is not possible to
capture the response times of the transactions. There are many reasons why this is
necessary: Middleware might not be able to tell WLM the response times of the middleware
transactions, or there are too few and too sporadic transactions, so that it does not make
sense to manage them toward a response time goal. Also, many address spaces provide
services in the system that cannot be easily attributed to a certain type of transaction. For
those address spaces, it is also necessary to understand how fast they progress in the
system and to define a goal for them. Because the system is not able to capture the response
time of this type of work, it must use the information that it is able to collect, such as
information about the delay and using values that it observes when the work tries to use
resources in the system. This information can be obtained by observing where delay
situations occur and constantly taking snapshots. After a certain time period, these snapshots
are summarized and the result helps to identify how often individual work and the service
classes were delayed for a resource and how often they were able to use it. The speed in the
system can now be expressed by the acceptable amount of delay for the work when it
executes. The speed is named execution velocity, a number between 0 and 100, where 100
means that all measured samples are using samples and that the work did not encounter any
delays for resources managed by WLM, and 0 means that the work was completely delayed
over the measurement interval.

Let us now try to compare the potential goals that can be defined for work in the system. On
one side, we can have a response time goal. Independently of whether we use an average or
percentile response time goal, we can always immediately understand what this means with
respect to how fast the work progresses in the system. On the other side, we have an
execution velocity goal. Clearly, we see that an execution velocity of 100 means no delay and
therefore it means the highest speed. But what does an execution velocity goal of 30 mean?
With respect to the traffic example, we know that it is always possible to go very fast by car in
a city on a Sunday morning, but not during rush hours where a fast speed always means that
the car has to wait at intersections and traffic lights. That also means that the best we can do
during rush hours implies that we have to wait quite frequently and that a speed expressed as
an execution velocity will be very low. If we want to define a reliable goal that can be achieved
under all circumstances, we have to understand how the system behaves during rush hour.
Such goals can be easily achieved during other times, because there is no contention and
everybody and everything can progress very fast. When we have two service classes of work,
one for which we can measure the response time, and the other for which we cannot
measure the response time, we need a way to compare the potential goal settings against
each other. Because it is very difficult to understand how an execution velocity translates into
a response time, we have to capture the execution velocity of the work being managed
toward response time goals simply because we need to understand what this means as an
execution velocity.

And last, in addition to setting response time or velocity goals, you might want to have work
running in the system for which no concrete goal must be achieved. This work should only run
when plenty of resources are available. This work is classified to service classes with a
discretionary goal and thus tells the system that it should only run when service classes with
higher importance do not need the resources to achieve their goals.

In the next sections, we analyze in more depth the WLM concepts and the constructs that
WLM uses for workload management. The starting point of the workload control process is to
define a Service Level Agreement between installation and the users.
Chapter 1. Introduction 5

1.1.2 Service Level Agreement
The perception of the performance of a system is often subjective and inaccurate. In order to
make it more objective and more effective for business needs, the concept of a Service Level
Agreement (SLA) was introduced. SLA is a fundamental step for performance analysis and
capacity planning disciplines.

An SLA is a contract that objectively describes:

� Average transaction response time for network, I/O, CPU, or total

� Distribution of response time (for example, 90% Time Sharing Option (TSO) trivial at less
than 0.2 of a second)

� Throughput

� System availability (percentage of time that the system is available to users)

� System load

A transaction or a business unit of work is an interaction (online or not) with a CICS®
subsystem, a IMS™ subsystem, a Web server, a batch job, and so on.

Figure 1-3 on page 7 shows an example of an SLA where the business staff and the system
administrators of the data center agree that the installation should provide the following level
of service for the application ABC:

� Ninety-five percent of all the data entry transactions must have an average response time
less than 0.3 seconds.

� This service level must be kept during the time frame between 08:00 am - 17:00 pm of the
working days.

� The application ABC has to be available for 96% of the service hours.

Note: We do not recommend that you include the external throughput rate (ETR) in an
SLA, because ETR includes variables not under control of the system administrators, such
as the number of users and user “think time.” Refer to “External throughput rate (ETR)” on
page 17 for more information about ETR.
6 System Programmer’s Guide to: Workload Manager

Figure 1-3 Service Level Agreement example

1.2 Workload Manager components
All the business performance requirements of an installation are stored in a service definition.
There is one service definition for the entire sysplex.

The service definition contains the elements that WLM uses to manage the workloads. These
include:

� One or more service policies.

� Workloads: Arbitrary names used to group various service classes together for reporting
and accounting purposes. At least one Workload is required.

� Service classes: Where you define the goal for a specific type of work.

� Report classes: Aggregate set of work for reporting purpose.

� Performance goals: The desired level of service that WLM uses to determine the amount
of resource to give to a unit of work.

� Classification rules and classification groups: Used to assign the incoming work to a
service class and, if needed, to a report class.

� Resource Groups: Used to assign a minimum and a maximum amount of CPU SU/sec to
one or more service classes.

� Application Environments: Set of address spaces with the same characteristics suitable
for transactions requested by a client and executed in a set of server address spaces.
WLM can dynamically manage the number of server address spaces to meet the
performance goals of the work making the requests.

System Admin

Business

Service Level Agreement

2.2 Application ABC

2.2.1 data entry

SERVICE HOURS

* 08:00 to 17:00 Monday to Friday excluding holidays

TARGETS

95% of all transactions have host response time
less than 0.3 seconds

AVAILABILITY

96% of service hours
Chapter 1. Introduction 7

� Scheduling environments: A list of resource names and their required state. The
scheduling environment allows you to manage the scheduling of work in an asymmetric
sysplex where the systems differ in installed applications or installed hardware features.

Figure 1-4 shows the hierarchy of the WLM elements within the service definition.

Figure 1-4 Service definition hierarchy

1.2.1 Service definition and service policies
The service definition is defined to WLM through the WLM ISPF application or through the
batch interface.

Refer to 4.2.5, “Service policy definition” on page 126, for more information about creating a
service definition.

There is only one service definition for the entire sysplex. The definition is given a name, and
it is stored in the WLM couple data set accessed by all the z/OS images in the sysplex.

In addition, there is a work data set used for backup and for policy changes.

The service definition consists of one or more service policies. There is only one active
service policy at a time in the sysplex. A service policy is a named collection of performance
goals and processing capacity bounds. It is composed of workloads, which consist of service
classes and Resource Groups. Two different service policies share the same set of service
classes where the performance goals can be different.

The active policy can be switched by the operator command below to reflect changes in
performance objectives. This command is a sysplex-wide command.

V WLM,POLICY=policyname[,REFRESH]

SCHEDULING
ENVIRONMENTS

SERVICE DEFINITION

SERVICE
CLASS

SERVICE
CLASS

PERIOD

GOAL
PERIOD

GOAL

CLASSIFICATION
RULES

SERVICE POLICY
NORMAL

WORKLOAD WORKLOAD WORKLOAD
PROD

APPLICATION
ENVIRONMENTS

RESOURCE
GROUP
8 System Programmer’s Guide to: Workload Manager

A workload is a named collection of service classes to be tracked and reported as a unit.
(Note that it does not affect the management of work.) You can arrange workloads by
subsystem (such as CICS or IMS), by major workload (for example, production, batch, or
office), or by line of business (ATM, inventory, or department).

The Resource Measurement Facility (RMF™) Workload Activity report groups performance
data by workload and also by service class periods within workloads.

1.2.2 Workload classification
z/OS is able to manage many types of workloads, each with different business importance
and processing characteristics. In order to accomplish this, the installation must categorize
the incoming work to the system using the classification rules.

Classification rules are the filters that WLM uses to associate a transaction’s external
properties, also called work qualifiers (such as LU name or user ID), with a goal.

Refer to Figure 1-5 for a view of the classification rules concept.

Figure 1-5 Classification rules

Following are some examples of work qualifiers, which are used in classification rules:

� Subsystem type, such as IMS, JES2/JES3, TSO/E, STC, CICS, OMVS, DB2® (parallel
queries), Distributed Data Facility (DDF), and others. Work qualifiers are specific to the
subsystem originating the transaction.

� LU name/netid

� Transaction name/job name, user ID

� DB2 work qualifiers such as correlation ID, collection name, package name, and others

For a complete list of work qualifiers, refer to 4.2.9, “Classification rules” on page 129.

Subsystem Type
Job Name
Userid

Subsystem Type

LU Name
Transact. Name

Subsystem Type
LU Name
Transact. Name

Subsystem Type
LU Name
Transact. Name

JES
BOND007

BOND

CICS
PARIS
NAM1

CICS

ROME

NAM2

CICS
ROME
NAM3

Subs Type=JES

1.Userid=BOND

BATCHA

BATCHBSC=

Subs Type=CICS

default SC= CICSB

1.LU=ROME

SC= CICSA

2.Tran=NAM3

SC= CICSC

Incoming Work Classification
Rules

Service
Class

BATCHB

CICSB

CICSA

CICSC

default SC=
Chapter 1. Introduction 9

A group of classification rules consists of a group of nested rules, where the order of nesting
determines the hierarchy of the classification rules.

Consider Example 1-1: The PAYR transaction coming from Paris is going to be associated to
service class CICSC and report class ABC. A PAYR transaction coming from Rome is going
to run in the CICSB service class by default.

Example 1-1 Sample classification for CICS transactions

* Subsystem Type CICS - Use Modify to enter YOUR rules

 Default Service Class is CICSB
 There is no default report class.

 Qualifier Qualifier Starting Service Report

 # type name position Class Class
 - ---------- -------------- --------- -------- --------
 1 LU Paris CICSA
 2 . TN . PAYR CICSC ABC

 Descriptions:

For more information about classification rules, refer to 4.2.9, “Classification rules” on
page 129.

1.2.3 Service classes
The service class (SC) describes a group of work within a workload with similar performance
characteristics. A service class is associated to only one workload and it can consist of one or
more periods (specified through the DURATION keyword).

There are three system-provided service classes: SYSSTC, SYSTEM, and SYSOTHER:

� SYSTEM: Used as the default service class for certain system address spaces. It does not
have a goal, and it is assigned fixed DP=x’FF’ and fixed IOP= 255.

� SYSSTC: The default service class for system tasks and privileged address spaces. It
does not have a goal, and it is assigned fixed DP=x’FE’ and IOP=254.

� SYSOTHER: As default service class for non-STC address spaces when no classification
rules exists for the subsystem type. It is assigned a discretionary goal.

A service class has the following parameters:

� Importance

The Importance is the most important definition and distinction you can make in the
service class definition. First of all, you need to define what is more and what is less
important to your business, and this defines the service classes (at least for work of a
similar nature).

� Performance goal

The goal types are:

– Response time (average and percentile)

Average response time is the expected amount of time required to complete the work
submitted under the service class, in milliseconds, seconds, minutes, and hours. This
only includes the time spent on z/OS, for example, it will not include network time.

Percentile is the percentage of work in that period that should complete within the
response time (for example, 80% of transactions ended in 0.5 of a second).
10 System Programmer’s Guide to: Workload Manager

If you have a bad RT distribution, using a percentile goal is better than using an
average goal. For example, nine transactions with a response time of 0.5 seconds and
one transaction with a response time of 3 seconds have an average response time of
0.75, but 90% of them have a response time of 0.5 seconds.

Workload management does not delay work, or limit it, to achieve the response time
goal when extra processing capacity exists, unless you are explicitly using a capping
function.

Work that is appropriate for a response time goal should have at least 10 transaction
completions within 20 minutes. If less, it might be difficult for WLM to react correctly,
because a single transaction might have a big impact and affect the calculated
response time.

– Velocity is the measure of how fast work should run when ready, without being delayed
for WLM-managed resources. Velocity goals define the acceptable amount of delay for
work when work is ready to run. The formula for calculating the execution velocity is:

Where:

• Using samples include all types of processors using samples and I/O using
samples.

• Delay samples include all types of processor delays, I/O delays, storage delays, and
queue delays.

To include the I/O figures in both Using samples and Delay samples, you need the
option I/O management set to YES in the service policy.

Starting with z/OS 1.6, a zSeries system can have regular processors and zSeries
application assist processors, and both types of processors are included in processor
delays and using delays. Processor delays also include processor capping delays,
which come from Resource Group capping. Storage delays consists of a variety of
different delay reasons, and queue delays can either be JES queue delays (for batch
work) or address space queue delays for applications such as WebSphere or DB
stored procedures, which exploit the WLM queuing services.

– Discretionary: WLM-defined goal. Work is run when system resources are available.
The performance index of the discretionary goal is always equal to 0.81 and has a fixed
I/O priority of 248. It is the goal of the SYSOTHER service class.

Associate this goal with work for which you do not have a specific performance goal.

A service class can have additional characteristics, such as belonging to a Resource Group
and having the CPU Critical or Storage Critical attribute:

Note: You must specify a host response time goal, not end-to-end. That is, workload
management does not control all aspects of system performance, so the response
time scope is confined to the time workload management has control of the work.
This time includes the time that the work is using or waiting for CPU, storage, I/O
service, or server address spaces.

Note: The execution velocity formula does not include the unknown state; as
mentioned before, this state includes the delay not tracked by WLM, such as locks
or enqueues. The response time goal instead does include the elapsed time that
corresponds to unknown samples. So, unknown delays affect WLM decisions for the
response time goal, but the same delays do not affect velocity goals.

Velocity Using samples Using samples Delay samples+ =
Chapter 1. Introduction 11

� Resource Group (optional)

A Resource Group defines:

– Minimum CPU service required (protection)
– Maximum CPU service limit (capping)

� CPU Critical (optional)

This can be defined for a service class for long-term CPU protection for critical work. For
more details, refer to 3.1.2, “CPU critical” on page 85.

� Storage Critical (optional)

This can be defined for a service class to assign long-term storage protection to critical
work. For more details, refer to 3.1.3, “Storage critical” on page 88.

1.2.4 Importance of a goal
Each service class is associated to an Importance level that specifies how important it is to
your business that this workload is meeting its goal. The importance defines how work is
treated by the system. It indicates which “unhappy” service class period should receive
resources in order to achieve the target goal. The Importance level values can be:

� Highest (1)
� High (2)
� Medium (3)
� Low (4)
� Lowest (5)

The absolute value specified is meaningless. What matters is the relative value. Importance
is ignored when you are meeting your goals.

Discretionary work has implicitly no importance while SYSTEM and SYSSTC work are
considered the highest importance works because of their top dispatching priority.

1.2.5 Resource Group
The Resource Group (RG) definition describes the amount of CPU capacity available to
transactions associated to a specific service class.

You can use an RG to:

� Limit (capping) the amount of CPU capacity available to the service classes. Capping is
used in situations where you want to deny the access of CPU cycles to one or more
service classes.

� Guarantee some minimum CPU capacity to the service classes when work in the group is
missing its goals.

Refer to Appendix B of z/OS V1R8.0 MVS Planning Workload Management, SA22-7602, for
further details.

If one of the associated service classes has a discretionary goal, WLM achieves the
minimum capacity only if this action does not impact other goals.

Refer to 4.2.7, “Resource Group specification” on page 127, for more information about RGs.
12 System Programmer’s Guide to: Workload Manager

1.2.6 Application Environment
Application Environments (AE) are used to automatically handle and control the number of
server address spaces for work managers (such as DB2, SOM®, WebSphere Application
Server, or MQ) exploiting the Queuing and Routing Manager WLM services.

Application Environments are defined in the WLM service definition and allow WLM to:

� Help meet the goals of a set of transactions by dynamically changing the number of server
address spaces.

� Do this without harming other, more important workloads on a system.

The Application Environment can be thought of as a set of server address spaces having
system or sysplex scope, belonging to the same subsystem instance, started by the same
procedure, and with the same capabilities (in terms of program libraries, accessible data, and
security authorization). An AE can be shared across the members of the sysplex.

The transactions in an AE can have different goals and consequently different service
classes. Each unique combination of AE and service class defines an Application
Environment queue. WLM creates queues for the transactions coming from the work
manager, and the application servers will fetch work from these queues. WLM samples the
queues to measure the time delay in order to decide if a new server address space for the AE
needs to be created. WLM creates at least one server address space for each Application
Environment and service class combination.

When defining an AE, you can specify:

� Application Environment name: Unique in the sysplex

� Work Manager: Identifies the work manager by type and subsystem name

� STC procedure name: The JCL in SYS1.PROCLIB to start the server address space

� Start parameters: Optional parameters to be passed to the server during address space
creation (such as user ID for security checking)

� WLM management options: Special options governing WLM control of address spaces

Example 1-2 shows the Application Environment panel in the WLM application, although this
task might not be required any longer since the introduction of the Dynamic Application
Environment capability. The Dynamic Application Environment allows the work managers to
dynamically deploy an Application Environment without the need of the explicit definition in
the WLM policy.

Example 1-2 Application Environment definition panel

Appl Environment Name . . DBDMWLM1
Description Workload generator
Subsystem type DB2
Procedure name DBDMWLM1
Start parameters DB2SSN=DB8E,APPLENV=DBDMWLM1

Limit on starting server address spaces for a subsystem instance:
 No limit

Chapter 1. Introduction 13

1.2.7 Scheduling environment
A scheduling environment is a list of resource requirements that ensures that transactions are
sent to systems that have those resources. This is particularly important in a sysplex
installation where the systems are not identical.

The defined resources can be physical entities (such as hardware features or subsystem
instance) or intangible entities, such as certain periods of time (working hours, off shift hours,
and so on).

The scheduling environment lists the resources and their required state, ON or OFF.

Example 1-3 shows the scheduling environment definition panel.

Example 1-3 Scheduling environment definition panel

IWMAPAD Create a Scheduling Environment Row 1 to 2 of 2
 Command ===> __
 Scheduling Environment Name DB2LATE_________ Required
 Description Offshift DB2 Processing_________
 Action Codes: A=Add D=Delete

 Required
 Action Resource Name State Resource Description
 __ DB2A ON_______ DB2 Subsystem
 __ PRIMETIME OFF______ Peak Business Hours

Refer to 1.2.7, “Scheduling environment” on page 14 to get more information about this
function.

1.2.8 Sampling dispatchable unit states
In order to enforce goals and to track the performance of a sysplex, WLM samples the states
of dispatchable units every 250 milliseconds.

Within each sample, a unit of work can be in one of the following states:

� Using, when using CPU or DASD I/O

� Delayed, when delayed by CPU, storage, or I/O

� Idle, when without work (such as TSO or OMVS without transactions, an initiator without a
job, APPC wait, or a server in STIMER wait)

� Unknown, when delayed by a non-tracked WLM resource (such as ENQ or operator) or
idle for a reason other than those listed under the idle state above

� Quiesced, when the unit of work is quiesced by the RESET operator command

RMF in the Workload Activity report shows these states as a percentage, and they should
add up to 100%. However, in some cases, there might be an overlap between Using states
and Delay states, causing the sum to be greater than 100%. For further details about how to
interpret the report, refer to z/OS V1R8.0 Resource Measurement Facility (RMF) Report
Analysis, SC33-7991.

The using and delay states are measured as follows:

� CPU

WLM adds to the address space or enclave using CPU count, which is the number of
dispatchable units (multiple state) actively executing on a CPU at every sample.
14 System Programmer’s Guide to: Workload Manager

WLM adds, to the address space or enclave delay CPU count, the number of dispatchable
units (multiple state) ready but delayed by CPU at each sample.

� Storage (paging and swapping)

There is no using storage count.

WLM adds, to the address space delay storage count, the number of dispatchable units
(multiple state) that have a storage delay (such as a page fault).

However, if the address space is swapped out in the OUTR queue (by an WLM decision)
or is in the process of being paged in due to a swap in, the delay storage counter is
increased by one (single state). This is done at every sample.

� DASD I/O (optional)

The measurement of I/O delay and I/O using is optional.

WLM adds, to the address space or enclave using I/O count, the number of dispatchable
units that have an I/O operation in the connect state that is moving data through the
channel. This is done at every sample.

WLM adds, to the address space or enclave delay I/O count, the number of dispatchable
units (multiple state) that have an I/O operation in the IOS queue or in pending state
(delayed by channel, control unit, or shared DASD device) in the channel subsystem, that
is, the channel program that is delayed. This is done at every sample.

1.3 Performance management metrics
Before going deeper into understanding how WLM works, we need to introduce some metrics
concepts in order to better understand the performance management process.

In performance management, there are metrics to verify the system behavior toward SLA and
performance in general. The following metrics apply to the following resources: CPU
processors including ICFs, IFLs, zAAPs, zIIPs, and SAPs, processor storage, and channels.
The SLA is a contract that objectively describes:

� Average transaction Response Time (Tr)
� External Throughput Rate (ETR)
� Resource Utilization (U)

In your performance management activity, you might also want to consider the concept of
saturation design point (SDP). For details, see “Saturation design point (SDP)” on page 19.

Average transaction response time
A transaction is a business unit of work implemented to solve a problem for the business. It is
produced by the interaction of an user (online or not) and the system. So, the transaction time
has two pieces: Computer response time and the user thinking time.

The computer response time is made of:

� Host response time
� Network time
� Other servers time

Note: After APAR OW47667, disconnect time is no longer counted as productive I/O
time. It is also not counted as I/O delay, because there is nothing WLM can do to
reduce disconnect time.
Chapter 1. Introduction 15

Response time for an online transaction is the time between when the user presses Enter and
when a panel with the required full data is presented. The time in other servers (your
workstation, for example) is due to Web applications, for example, where a servlet or JSP™
returns an HTML page, including many GIFs.

Response time for a batch job transaction is the time between the JOB submit and the final
execution of the last job step where the time for sysout printing and purging is not included.

Response time in general is made of service time (the time actual work is done) and waiting
time (the time waiting for resource):

Similarly for computer response time, transaction service time (Ts) and transaction wait time
(Tw) are made up of the individual resource service and wait times, as shown in Figure 1-6:

You should understand that a high Tw is not a cause for unacceptable Tr, but a consequence
of high activity in the server. Then, we can decrease Tw by decreasing Ts and ETR; refer to
“External throughput rate (ETR)” on page 17.

Another way to split response time (Tr) on the host is by subsystems. For example, in a CICS
transaction, the response time is composed of:

� TCP/IP time
� CICS processing time
� DB2 access time

Figure 1-6 Average transaction response time

Transaction response time is the best way to characterize the performance of a transaction,
because it is directly connected to business needs and it is easily understood by people. The

Tr Ts Tw+=

Ts Ts (CPU) Ts (I/O) Ts (TP) Ts (Other)+ + +=

Tw Tw (CPU) Tw (I/O) Tw (TP) Tw (Storage) Tw (Other)+ + + +=

Tw (CPU): Time with ready dispatchable units, but not enough dispatching priority.
Tw (I/O): Time with I/Os delayed in UCB or channel subsystem.
Tw (TP): Time in the VTAM or TCP/IP queues.
Tw (Storage): Time suffering a page fault or being swapped-out.
Tw (Other): Time delayed by operator, ENQ, data set recall, server AS service.
Ts (CPU): Time with dispatchable units executing CPU.
Ts (I/O): Time with I/Os being executed (connected or disconnected).
Ts (TP): Time being transported in the network.

Tw
CPU

Tw
I/O

Tw
TP

Tw
Storage

Tw
Other

Tr

Exploding the Response Time (Tr)

Tw Ts

Ts
CPU

Ts
I/O

Ts
TP
16 System Programmer’s Guide to: Workload Manager

response time measured by z/OS and reported by RMF is the host response time portion
only.

If the Tw is zero and the SLA is not accomplished, then you need to decrease the Ts. This
can be done either by buying more resources on the processors (CPU, channel, or SAP®) or
improving the logic of the application program processing the transaction. There is a simple
relationship between time in the queue (Tw) and the average length of the queue, and it is
obtained by sampling.

RMF offers different ways of viewing response times:

� The Monitor III and WLM sample the state of the address space and enclaves keeping the
result in state counters:

– Using state is the sampled view of service time (Ts).
– Delay state is the sampled view of wait time (Tw).

� Workflow and execution velocity are metrics based in the using and delay sampled
numbers. These measurements provide a detailed view of what happens in the system,
and they can help you to understand system performance. You can see which address
spaces, enclaves, or workloads are performing well and which ones are not. Use these
measurements to learn the reasons for performance problems occurring in workloads or
resources.

Example 1-4 shows a sample of the Monitor III Group Response Time report where you can
see several time components of a transaction response time. For example, the OMVS service
class transactions have on average a response time of 19.39 sec. This response time is
broken into pieces, such as 6.46 secs using CPU, 0.64 secs using DEV (I/O), 0.64 secs being
delayed by CPU, and so forth.

Example 1-4 Monitor III Group Response Time report

RMF V1R5 Group Response Time

 Samples: 100 System: AQTS Date: 12/22/04 Time: 16.18.20 Range: 100 Sec

 Class: OMVS Period: 1 Description:
 Primary Response Time Component: Delayed for unmonitored reasons

 TRANS --- Response Time ----
 WFL Users Frames Vector EXCP PGIN Ended -- Ended TRANS-(Sec) -
 % TOT ACT %ACT UTIL Rate Rate Rate WAIT EXECUT ACTUAL
 91 16 1 1 0 772.4 0.0 0.110 0.003 19.39 19.39

 -AVG USG- -------------Average Delay--------------
 Total PROC DEV PROC DEV STOR SUBS OPER ENQ OTHER
 Average Users 2.130 0.71 0.07 0.07 0.00 0.00 0.00 0.00 0.01 1.31
 Response Time ACT 19.39 6.46 0.64 0.64 0.00 0.00 0.00 0.00 0.09 11.9

 ---STOR Delay--- ---OUTR Swap Reason--- ---SUBS Delay---
 Page Swap OUTR TI TO LW XS JES HSM XCF
 Average Users 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 Response Time ACT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

External throughput rate (ETR)
ETR is a measurement of the number of ended transactions per elapsed time, as pictured in
the following formula:

ETR Number of Transactions
Elapsed time

--=
Chapter 1. Introduction 17

ETR is also called transaction rate. ETR is associated with a system’s throughput.

In the Workload Activity report, the elapsed time is the RMF interval. In Example 1-5, the
interval set was 30 minutes (1800 seconds), where 1879 transactions from service class
TSOHIGH ended, causing an ETR of 1.04 (field END/S in the report).

Example 1-5 Workload Activity report (extract)

TRANSACTIONS (Service Class TSOHIGH)
AVG 4.42
MPL 4.39
ENDED 1879
END/S 1.04
#SWAPS 3154
EXCTD 0
AVG
ENC 0.32
REM
ENC 0.12
ENC 0.01

There is also one formula relating the Tr with ETR:

Where:

N Is the average number of users generating transactions (logged on)
Tt Is the average thinking time of these users
Tr Is the average computer response time

Some considerations regarding this formula:

� The variables that more intensively affect the ETR are N and Tt due to their usual numeric
values. Therefore, SLAs based on ETR are difficult to attain, because the only variable
that the IT department can directly manage is Tr.

� Any bottleneck, internal or external to the system, affects the ETR. Examples include I/O
constraints, tape mount delay, and paging delay.

Resource utilization
Resource utilization measures how much a resource delivers service in a timely basis. The
general formula is:

We can derive (for just one server):

Replacing Busy_Time in the first formula:

U% = Ts × # Transactions × 100/Elapsed_Time

This formula shows that the U increases when Ts, ETR, or both elements rise.

For example, if in a bank branch office with only one teller, there is an average arrival rate of
two clients per minute with a service time (Ts) of 0.25 minute, we can say that the teller
average utilization is U% = 0.25 x 2 x 100 = 50%.

� The product: Ts x ETR is also called traffic.

ETR N Tt Tr+ =

U% Busy_Time 100 Elapsed_Time=

Busy_Time Ts # Transactions=

U% Ts ETR 100=
18 System Programmer’s Guide to: Workload Manager

� The product: Tr x ETR is called intensity.

Saturation design point (SDP)
CPU is either in busy state or in wait state. In other words, either it is 100% busy or 0% busy.
Figure 1-7 on page 19 shows this fact for a duration of a few minutes. The shaded area
indicates that the CPU is busy. Performance monitors group these states in a specific amount
of time, for example, a one-minute interval. In Figure 1-7 on page 19, the left portion of the
graphic shows a minute time scale. In the first minute, the average utilization is 40% and in
the second minute it is 65%.

Usually, these values are grouped in intervals of hours. An hourly average is calculated and
presented to human analysis (50%, 80%, and 90% in the right part of the graphic). As you
decrease the granularity (from one minute to one hour), you might lose key details. The major
question is, “If my hourly utilization is 75%, how often did I reach 100% in the per minute
average within this hour?”

To answer this question, the concept of saturation design point (SDP) was developed. SDP is
the maximum average utilization in a larger interval (one hour, for example), where the
installation is sure that in the smaller interval (one minute, for example) the average utilization
was never 100%. If the current average is greater than the SDP, then the 100% busy was
reached in the smaller interval. Following is the formula for the hour/minute relationship:

Imagine that, in some hour interval, the average hourly utilization was 80%, and, in that hour
interval, the highest minute average peak was 92%. Then:

SDP% = 80 x 100 / 92 = 87%

Figure 1-7 Utilization curve with SDP

Observing the formula, it is clear that when SDP is equal to the average hourly utilization,
then at least in one minute, the 100% minute average was reached.

SDP% Average Hourly Utilization 100 Peak Minute Utilization=

85%

100%

HOUR

70%

60%

90%

50%

40%

0 1M 2M 1H 2H(MIN)

SDP 85 %

3H
Chapter 1. Introduction 19

In Figure 1-7, the SDP is worth 85%; then, when hour utilization is 90% (as in the third hour),
there is the guarantee that for some minute average within that hour the 100% mark was
reached.

If a client knows its SDP using theoretical (usually 70%) or experimental approaches, the
client can use this information in:

� Performance management for avoiding the case where the hour average exceeds the
SDP

� Capacity planning for sizing the processors to not exceed the SDP limit

1.3.1 Processor performance metrics
Below are metrics used in performance management and capacity planning to evaluate the
processor speed capacity:

� CPU time

� CPU busy %

� Millions of instructions per second (MIPS)

� Millions of floating point instructions per second (MFLOPS)

� CP service units, System Resource Manager (SRM) constant, millions of service units per
hour (MSU)

� External Throughput Rate (ETR)

� Internal Throughput Rate (ITR)

� Large Systems Performance Reference (LSPR) - RPP

CPU time
CPU time of a transaction is the processing time consumed to execute the program logic of
the transaction. In z/OS, the program is associated with a dispatchable unit, a task (TCB) or a
service request (SRB) at an address space or enclave basis. The transaction CPU time is
measured by z/OS and is called captured time.

The RMF Workload Activity report shown in Example 1-6 shows several components of the
CPU time.

Example 1-6 RMF Workload report extract

---SERVICE---- --SERVICE RATES--
 IOC 56040 ABSRPTN 598
 CPU 1680K TRX SERV 594
 MSO 2938K TCB 271.3
 SRB 56695 SRB 9.2
 TOT 4731K RCT 4.4
 /SEC 2626 IIT 5.4
 HST 0.0
 APPL % 16.1

One of the installation’s targets in performance management is to reduce such an amount.
The CPU time value for the execution as a transaction can also be theoretically derived
through the formula:

Let us now discuss the elements of this formula.

CPU time Cycle_Time CPAI Path_Length=
20 System Programmer’s Guide to: Workload Manager

Cycle time
Cycle time can be defined in one of the following ways:

� Time to execute the fastest instruction of the CPU instruction set. All the instructions are
executed in a time multiple of the cycle time.

� Time elapsed between two consecutive pulses generated by the internal clock in the
processor. Numerically, it is the inverse of the frequency that is measured in MHz.

Path length depends on the instruction set and the compiler.

Cycles/instruction (CPAI) depends on the design (for example, microcoded instructions or
pipeline).

Cycle time depends on the technology (for example, CPU model).

Thus, cycle time by itself is not a complete indicator of CPU speed.

Cycle per average instruction (CPAI)
CPAI is the number of cycles, on average, needed to execute one instruction. CPAI depends
very much on the set of executed instructions. These are very simple instructions executed in
just one cycle. The z990 can even execute more than one instruction in one cycle; this
property is called superscalar. Alternatively, there are complex instructions that need many
cycles in order to execute, biasing consequently the CPAI to a higher value.

The multiplication of CPAI x Cycle_Time produces the average time to execute one
instruction, and its inversion produces the MIPS metric.

Path length
Path length is the number of instructions needed to execute the transaction program.
Obviously, if you have a shorter path length, this produces shorter CPU time. Path length
depends on:

� Processor architecture, which defines the set of instructions
� Quality of the compiler that generates the object code

The goal of an architecture is to offer powerful instructions in order to implement a program
with a short path length.

Millions of instructions per second (MIPS)
This term depends on cycle time and the number of cycles per instructions. It is only valid for
comparison if the instruction sets are the same. In common usage today, MIPS are used as a
single number to reflect relative processor capacity. As with any single-number capacity
indicator, your experience can vary considerably. These numbers are often based on
vendor-provided announcements.

Using MIPS as a comparison between two processors is fair only when the two processors
execute exactly the same set of instructions executing the same logic associated with the
same transaction program.

We do not recommend using this method; you should instead use the LSPR method
described later.

MFLOPS
MFLOPS mean millions of floating point instructions per second. This value is used only in
numerically intensive computing (scientific and technical). There is one important benchmark
available in the industry that measures MFLOPS performance, the LINPACK benchmark.
Chapter 1. Introduction 21

Here, many computer companies are in a tough battle to have the worldwide fastest
processor. You can find details in:

http://www.linpack.com

CPU Service Units: System Resource Manager (SRM) constant
CPU Service Units is a metric used by z/OS to measure the CPU consumption by
transactions executing under z/OS dispatchable units, such as tasks (TCB) or service
requests (SRB).

A CPU Service Unit should be more or less repetitive and only include the productive CPU
execution. Below is an explanation of these terms:

� Productive: The consumption of CPU due to overheads such as page fault, swapping, and
dispatcher is not accounted for in the transaction CPU Service Unit.

� Repetitive: The same value is roughly measured for the same transaction (executing the
same logic with the same amount of I/O records) in any CPU.

The System Resource Manager constant is a number derived by product engineering to
normalize the speed of a CPU, so that a given amount of work would report the same service
unit consumption on different processors.

The relationship between CPU SUs and SRM constant is illustrated in the following formula:

Service Units (SUs) are typically used by the WLM as a base for resource management.

With IRD, the SRM constant used for an image is equal to the INITIAL CP definition for the
LPAR even if the number of logical CPs is changing because of the IRD effect. For example,
if there are nine initial CPs and IRD leaves only four CPs, the SRM constant used will
correspond to a nine-way machine.

The SRM constants are contained in internal tables within z/OS and are published in the z/OS
MVS Initialization and Tuning Guide, SA22-7591. The SUs are reported in many Monitor I and
Monitor III reports, or you can find them at:

http://www.ibm.com/servers/eservers/zseries/srm/

Many installations that have to charge the users will do so on the basis of SUs. This is a
reasonable approximation of relative capacity. But, of course, any single-number metric for
processor capacity comparison can be misleading; therefore, Large Systems Performance
Reference (LSPR) numbers, based on your own workload mix, are the best basis to use.

Internal throughput rate (ITR)
ITR determines the capacity of a processor in terms of the number of transactions per CPU
second.

ITR is a function of:

� CP speed. For example, faster the CP, higher the ITR.

� Operating system. So, for example, the better the operating system, the higher the ITR.

Tip: The SUs delivered in an LPAR configuration are dependent on the number of physical
shared processors on the CPC and not on the number of online processors at LPAR IPL
time.

Service units CPU seconds SRM constant=

ITR Number of Transactions CPU Time =
22 System Programmer’s Guide to: Workload Manager

http://www.ibm.com/servers/eservers/zseries/srm/
http://www.linpack.com

� Transaction workload characteristics. For example, short trivial transactions produce
higher ITR.

If we make constant the operating system (z/OS, for example) and the transaction workload
variable, we can use ITR to measure the CPU speed in terms of transactions. Comparatively,
ITR is more suitable for such comparisons than ETR, because ETR depends on a much
larger amount of variables. Refer to “External throughput rate (ETR)” on page 17.

IBM calculates ITRs for several workloads and machines using the Large Systems
Performance Reference (LSPR) methodology. ITR provides a reliable basis for measuring
capacity and performance. The relationship between ETR and ITR is:

Then, when the CP utilization is 100%, the ETR is equal to ITR.

Using ITRs, you can define an ITR ratio (ITRR) between two processors:

Large Systems Performance Reference (LSPR)
Although CPU time consumed by one transaction is the best metric to measure the speed of
a CPU, the formula seen in “CPU time” on page 20 is not practical because path length and
CPAI can hardly be measured in your workload.

To address that problem, IBM implemented a benchmark method to estimate the CPU
capacity needed for your workload. A benchmark is a well-defined set of measurements for
specific applications. A benchmark can be online transaction processing, batch jobs,
WebSphere applications, and others. Due to the fact that benchmarks are based on
applications (rather than just using a MIPS value for a processor, for example), it is easier for
installations to understand benchmark results, and then project these results onto their own
environments.

The IBM benchmark project is called Large Systems Performance Reference (LSPR) and
measures ITRs of different machines with different workload types and different operating
systems (z/OS, z/VM®, VSE, and ACP/TPF). The idea behind LSPR is that in most cases it is
not useful to characterize a processor by only one number (or a set of numbers for different
workloads), but instead by comparing two processors. Therefore, if you have installed one
specific processor and you want to upgrade to another one, you can use the LSPR numbers
to see how much more capacity you can get. LSPR tables always show ITRR values; one
selected processor is defined as base with the value ITRR=1.0, and the values for all other
processors show the relative performance compared to the base processor. All the capacity
numbers are relative to the zSeries 2084-301. Table 1-1 shows the ITRR value for some z990
processors.

Table 1-1 LSPR table z990 referred to z/OS Release 1.6

Processor #CP Mixed CB-L CB-S WASDB OLTP-W OLTP-T

2084-301 1 1.00 1.00 1.00 1.00 1.00 1.00

2084-302 2 1.90 1.95 1.80 1.91 1.93 1.93

2084-303 3 2.78 2.88 2.58 2.80 2.82 2.82

2084-304 4 3.63 3.80 3.32 3.68 3.69 3.68

...

2084-315 15 12.32 12.70 9.36 12.45 11.22 10.72

ETR ITR CPU Utilization=

ITRR ITR(Proc2)
ITR(Proc1)
---------------------------=
Chapter 1. Introduction 23

These ratios represent the IBM assessment of relative processor capacity in an
unconstrained environment for the specific benchmark workloads and system control
programs specified in the tables. Ratios are based on measurements and analysis. The data
shown in the table is based solely on IBM measurements and analysis of the processors in
the tables.

Each individual LSPR workload is designed to focus on a major type of activity, such as
interactive, online database, or batch. The LSPR does not focus on individual pieces of work
such as a specific job or application. Instead, each LSPR workload includes a broad mix of
activity related to that workload type. Focusing on a broad mix can help assure that resulting
capacity comparisons are not skewed. Some of the workloads are:

� OLTP-T: Traditional Online Workload
� OLTP-W: Web-enabled Online Workload
� WASDB: WebSphere Application Server and Database
� CB-L: Commercial Batch Long Job Steps
� CB-S: Commercial Batch Short Job Steps

Relative Processor Power (RPP) is the average ITR ratio of the workloads described by the
Mixed column in Table 1-1 on page 23. The mixed workload consists of an equal mix of
OLTP-T, OLTP-W, WASDB, CB-S, and CB-L.

RPP is normalized to a base machine. So, if a given transaction takes a certain amount of
RPPs, you can estimate how much it would consume on a different machine by using the
formula:

In summary, various numbers can commonly be used as rough indicators of CPU capacity.
Remember that most of these are very rough approximations only, and your actual capacity
can vary significantly. To get the most accurate assessment of CPU capacity for your
workload, differences in workload processing characteristics must be taken into account
using a methodology such as that described in the Large Systems Performance Reference.
You can find the most current version at:

http://www.ibm.com/servers/eserver/zseries/lspr/zSeries.html

In addition, we recommend that you do not use the LSPR ratios directly, but rather to build
workload mixes based on the work that your installation is running. There is a flash with the
methodology about how to define a workload mix when building capacity sizing plans, and it
gives information about when it is appropriate for its usage. You can find the document at:

http://www.ibm.com/servers/eserver/zseries/lspr/lsprmixwork.html

2084-316 16 12.98 13.40 9.70 13.16 11.72 11.26

Ratios for 17-way and above are based on running multiple OS images.

2084-317 17 13.62 14.08 10.05 13.85 12.24 11.79

2084-318 18 14.24 14.73 10.38 14.52 12.74 12.31

...

2084-323 23 17.05 17.71 11.65 17.61 14.94 14.82

2084-324 24 17.56 18.24 11.83 18.17 15.32 15.30

Processor #CP Mixed CB-L CB-S WASDB OLTP-W OLTP-T

Utilization (CPU new)
RPP(CPU old)
RPP(CPU new)
------------------------------------- Utilization (CPU old)=
24 System Programmer’s Guide to: Workload Manager

http://www.ibm.com/servers/eserver/zseries/lspr/zSeries.html
http://www.ibm.com/servers/eserver/zseries/lspr/lsprmixwork.html

1.3.2 I/O performance and metrics
As we did with CPU, now we visit some performance management considerations and
metrics associated specifically with an I/O operation.

As CPU speed increases, the I/O response time (I/O Tr) become the determinant factor in the
average transaction response time. The I/O response time is shown in the formula:

The average I/O response time is one of the fields shown in Example 1-7, the Shared Device
Activity report.

Example 1-7 Shared Device Activity report

SMF DEVICE AVG AVG AVG AVG AVG AVG AVG % % % AVG
 DEV DEVICE VOLUME PAV SYS IODF LCU ACTIVITY RESP IOSQ CMR DB PEND DISC CONN DEV DEV DEV NUMBER
 NUM TYPE SERIAL ID SUFF RATE TIME TIME DLY DLY TIME TIME TIME CONN UTIL RESV ALLOC

 8004 33903 PAVTS1 *ALL 4043.964 1.0 0.0 0.2 0.0 0.4 0.0 0.7 33.03 33.03 0.0 8.9
 8 SYS1 29 00A9 1139.045 1.0 0.0 0.2 0.0 0.4 0.0 0.7 9.33 9.33 0.0 3.0
 8 SYS2 29 00A9 1466.329 1.0 0.0 0.2 0.0 0.4 0.0 0.7 11.96 11.96 0.0 3.0
 8 SYS3 29 00A9 1438.591 1.0 0.0 0.2 0.0 0.4 0.0 0.7 11.74 11.74 0.0 2.9

So, obviously, you can get excellent transaction response time by reducing I/O wait time (Tw)
and I/O service time (Ts). Turning into I/O performance metrics, the I/O Tr is formed by four
components:

Where:

� I/O Tw = IOSQ time + pending time
� I/O Ts = Connect time + disconnect time

Figure 1-8 depicts the current four stages of an I/O operation followed by an explanation of
each of the fields.

I/O Tr I/O Ts I/O Tw+=

I/O Tr IOSQ Time Pending Time Connect Time Disconnect Time+ + +=
Chapter 1. Introduction 25

Figure 1-8 The four stages of an I/O operation

The stages and fields are:

� IOSQ: Time waiting for the UCB available in the z/OS operating system. It is drastically
reduced by the implementation of dynamic PAV.

� Pending: Time from the SSCH instruction (issued by z/OS) until the start of the dialog
between the channel and the I/O controller. The pending time is a product of the following
components: All channel path busy time, Director Port Switch (DPS) busy time, control
unit (CU) busy time, Device (DB) busy time, and SAP overhead time. DPS, CU, and DB
time were presented individually in the RMF DASD Activity report and in the IOQUEUE
Activity report. The other two values were derived by subtraction from the total pending
time. Due to FICON® and modern controllers, some of these time components
disappeared and some were moved to disconnect time; as such, FICON channel is almost
always available, FICON switches do not present DPS busy, modern controllers hide the
CU busy situation, and Shark multiple allegiance avoids shared device busy. Then, with
today’s technology, the pending time is formed by:

– Command Reply (CMR) time. It measures how long the channel waits for the controller
at the start of the I/O dialog (command response delay). It is shown in RMF Device
activity and IOQUEUE reports. It is an indication of how busy the controller is. This
applies only to FICON technology.

– Device busy time. It indicates how long the device is busy because a hardware reserve
has been issued by another system. The other cases of potential device busy, together
with CU busy and DPS busy, were moved to disconnect time. Device busy time is
shown in the RMF Device Activity report, and it can be an explanation for Missing
Interrupt Handling messages, together with bad performance.

Pend Disconnect ConnectIOSQ

Device is
in use by
this
z/OS, no
PAV
UCB
aliases
are
available

Device
reserved
from
another
system
CMR delay
SAP
overhead
Old causes

Read Cache
miss
Reconnect
miss
(ESCON)
Synchronous
remote copy
Multiple
allegiance or
PAV write
extent
conflicts
Sequential
write hits,
rate is faster
than
controller can
accept
CU busy

Channel
data and
protocol
transfer
26 System Programmer’s Guide to: Workload Manager

– SAP overhead. It indicates the time that SAP needs to handle the I/O request. This
should be around 0.1 to 0.3 milliseconds depending on the SAP speed, which depends
on the CPC model. SAP utilization is now reported on an IOQ Activity report.

– Old reasons such as: The existence of ESCON® directors causing DPS busy. These
times are not individually portrayed in the DASD activity report, but you still can see
them in the IOQUEUE Activity report on a logical control unit basis.

� Disconnect: Time that the I/O operation has already started, but the channel and I/O
controller are not in a dialog. In a FICON protocol, there is no disconnect time concept;
however, a numerically equivalent figure is accounted by the hardware component
Channel Measurement Facility. The reasons for disconnect time are:

– Read Cache miss: The I/O block is not in the controller cache.

– Reconnect miss: The time to dynamically reconnect an ESCON channel.

– Synchronous remote copy (Peer-to-Peer Remote Copy (PPRC)): The mirroring is done
within the disconnect time.

– Multiple allegiance or parallel access volume (PAV) write extent conflicts: It was
reported as PEND (pending timed) within the device busy time.

– A sequential write hits faster than the controller can accept in the cache.

– CU busy: It was previously reported as CU busy in pending time; modern controllers
move into disconnect time.

� Connect: Time when the channel is transferring data from or to the controller cache or
exchanging control information with the controller about one I/O operation. That is, both
are in a dialog. Then, connect time includes the real productive time of an I/O operation,
that is, the data transfer. However, there is still the overhead of the dialog protocol. For
example, in sequential processing, if you decrease the number of SSCHs (by better
buffering), even though transferring the same amount of data, your connect time
decreases consistently because there is less overhead.

There are other I/O metrics, such as:

� I/O Intensity = I/O Tr x I/O Rate

Measures the activity in the device in ms/sec, including the queue time.

� I/O Traffic = I/O Ts x I/O Rate

Measures the activity in the device in ms/sec, excluding the queue time. In one device, it is
numerically equal to the utilization of such device.

� I/O Density = I/O Rate per DASD space capacity

Measured in I/Os per sec per GB. Depends on type of access, size of your files, and how
many gigabytes per device (if not a PAV device).
Chapter 1. Introduction 27

28 System Programmer’s Guide to: Workload Manager

Chapter 2. How WLM works

This chapter provides insight into the workload management structures in a z/OS
environment. The purpose of this chapter is to briefly review the SRM algorithms and focus on
the WLM decision-making process, on the transaction management, and on functions that
comprise the workload performance management tasks.

SRM is still a live component in the z/OS operating system and cooperates with WLM to
manage the performance of the workloads. In today’s environment, you no longer need to
customize the SRM component, because all the SRM functions are driven through WLM.
WLM manages work execution by dynamically managing system resources to achieve
the goals associated with the work requests.

The WLM component can be viewed as an enabler providing services that allow
subsystem work managers to supply response time information. WLM is also responsible
for exchanging the performance data between systems in a sysplex and enables
sysplex-wide performance management.

For simplicity, in this book we do not distinguish between WLM and SRM functions because
they are tightly integrated; we only use WLM.

2

© Copyright IBM Corp. 2005, 2006, 2007. All rights reserved. 29

2.1 Workload management
Workload management can be divided into several functions:

� A z/OS component, WLM, formed by the following routines:

– Service administration application
– Administration policy management
– System and sysplex operation

All these routines are involved with WLM policy management:

� WLM services constituted by the following set of routines:

– Services for the subsystem work managers
– Report manager

� A WLM component formed by two major functions:

– Policy adjustment
– Resource adjustment

� Subsystem work managers supporting the WLM services

Throughout this book, the expression subsystem work managers means subsystems such
as CICS, IMS, IWEB, and others, exploiting WLM services.

2.2 z/OS dispatchable units (DUs)
Before going deeper into the WLM algorithms discussion, it might be useful to briefly revisit
the concept of a dispatchable unit in z/OS.

A z/OS dispatchable unit (DU), as seen in the literature, is a serial execution of computer
logic code to achieve a business need. WLM transaction management introduces a concept
called Business Unit of Work and a new idea of dispatchable units, which is fully described in
“The idea of dispatchable units” on page 32 and in 2.4, “Transactions and management” on
page 61. In this section, we describe the WLM management of its dispatchable units.

� There are four types of DUs in z/OS:

– Preemptible Task (TCB)
– Nonpreemptible Service Request (SRB)
– Preemptible Client Service Request (client SRB)
– Preemptible Enclave Service Request (enclave SRB)

� Each Dispatchable Unit (DU) is associated with:

– State
– Resources
– Priorities
– Account
– Addressing
– Security

A program and a DU are different entities. In z/OS, you have control blocks describing the DU
(TCB and SRB) with a description of their state and held resources. A program is a sequence
of instructions that are executed on behalf of a DU on a z/OS Central Processor (CP).
30 System Programmer’s Guide to: Workload Manager

Preemption
A preemptive operating system follows strict CPU dispatching priority (DP). When a
dispatchable unit (DU) is active and another DU with a higher DP becomes ready, the active
DU is instantaneously suspended (its state is saved) and the new ready becomes active (its
state is restored).

z/OS is a reduced preemptive dispatcher. There are situations in z/OS where preemption
does not occur:

� Code running hardware disable for interrupts in the program status word (PSW).

� Nonpreemptible dispatchable units (such as traditional SRBs). Once dispatched, they
continue to run until they incur a voluntary suspension (such as lock held or page fault) or
they complete. External and I/O interrupts are serviced (usually SRBs are
interrupt-enabled), but the SRB is redispatched after each interrupt is processed.

Resources needed for DUs
There are three basic resources of a system that are required in order to execute
dispatchable units (TCBs and SRBs). These resources are the processor, the processor
storage, and I/O. WLM manages these resources and the transactions using them by
measuring the various delays that dispatchable units are experiencing.

WLM Business Unit of Work
WLM uses the concept of Business Unit of Work (BUoW) to identify a transaction or a unit of
work.

A Business Unit of Work can be:

� An address space. The life of the transaction is the life of the address space.

� An action within an address space, for example, a TSO user issuing a command. This
requires interfaces that allow the address space to tell WLM when a transaction starts and
when it stops. Note that this can be at the CLIST/REXX command level when
CNTCLIST=YES is specified (as we generally recommend) in IEAOPTxx.

� An activity that spans multiple address spaces generally through Cross Memory. It is
typically the case for transaction monitors, such as CICS, IMS, WebSphere, DB2 Stored
Procedures, and so forth.

Let us have a look at the transaction flow shown in Figure 2-1 on page 32.

Note: With z890, z990, and z9™-109 processor types, there are new processing units
called zSeries Application Assist Processor (zAAP) and z9 Integrated Information
Processor (zIIP) available. These processing units are used to offload certain types of DUs
from the central processor, which is often referred to as the standard or general purpose
processor. The zAAP is available for executing Java™ instructions under the control of
JVM™ starting with z/OS V1R6 and with the z890, z990, and z9-109 processor types. DU
running JVM (from AS/enclave) can be executed on these processor types. The JzIIP is
available for the execution of specific DB2 DUs starting with DB2 Version 8 and z9-109
processor types.
Chapter 2. How WLM works 31

Figure 2-1 Transaction flow

Figure 2-1 depicts the general structure of transaction processing on z/OS. Depending on the
middleware or subsystem, one or multiple address spaces provide a connection to external
clients.

For CICS, this is typically a Terminal Owning Region (TOR) and for WebSphere, for example,
a Control Region. External clients can be everything; for example, a user sitting at a terminal
or a program on a different server. The address space that receives the work request on z/OS
primarily checks its authority and resource requirements, and if the application can process it,
the region sends it to an application processing region. For CICS, these are named
Application Owning Regions (AOR) and for IMS, Message Processing Regions. The
application region starts a program that processes the request, and the program invokes
other middleware, operating system services, or services from other subsystems to complete
the request. One typical example is that the request accesses a database, in many cases,
DB2 on z/OS.

The idea of dispatchable units
In a modern multiple address space application scenario such as client/server, we might
have:

� Multiple tasks in one address space executing requests from other tasks from other
address spaces

� A task in one address space executing programs (in cross-memory mode) in other
address spaces

� A client preemptible SRB in a loop in a server address space utilizing an entire CPU

� A transaction requiring the serial execution of multiple tasks in several address spaces

� A global SRB with a priority above any task

� An SRB scheduled from one address space and running in other address spaces

Because the business unit of work or user transaction might span and mix different MVS
dispatchable units in terms of TCB or SRB, you need to consider from an accounting and
priority point of view:

� The TCB in the server address space, even working on behalf of a client TCB, would be
charged for its resource consumption.

� The client requests are managed according to the server address space TCB priority and
not to the TCB client goals as inherited from the user transaction. So, the server can

Daemon, Control Region,
Terminal Owning Region

DatabaseDatabase

Application Server,
Application Owning Region,
Message Processing Region

Database Server
32 System Programmer’s Guide to: Workload Manager

execute tasks on behalf of clients who have different goals, but all tasks execute with the
goal of the server address space.

The dispatchable units in modern multi-address space applications
In order to address such problems, new dispatchable units have been defined based on the
following requirements:

� Preemptible processes to avoid someone dominating CPU resources
� Easy parallelism of processes in one query
� Accounting (by transaction and globally) in the client
� Priority of the client
� Low overhead (less costly than ATTACH)
� Retaining the capability of defining service class or performance group periods
� Retaining the concept of Resource Group, if in goal mode

These dispatchable units are built on preemptible class SRB and a construct called enclave is
introduced. Preemptible-class SRBs combine the characteristics of SRBs and tasks and
include the following types:

� Client SRBs
� Enclave SRBs

All preemptible-class SRBs share certain attributes, for instance, the property of being
preemptible. Preemptible dispatchable units, such as tasks and preemptible-class SRBs, can
be suspended by the dispatcher at any time to run other dispatchable units at the same or a
higher priority.

Any dispatchable unit that is CPU bound is expected to be preemptible in order for the
dispatcher to be able to run other units of work.

Therefore, the preemptibility of the new SRB types, together with the lower overhead of
creating an SRB instead of a TCB, makes the preemptible SRBs a viable replacement for
tasks.

A client SRB is a preemptible dispatchable unit that runs a program in one address space
(server) but executes work on behalf of some other address space (client). In other words, the
priority and account are the ones from the client address space. All dispatching controls are
derived from the client address space, including the dispatching priority. The CPU time
consumed by a client SRB is accumulated back to the client address space and is included
as a CPU service in the client address space’s current WLM transaction. When the client
address space switches to a new performance period, any client SRBs running on behalf of
the client address space also switch to a new performance period. Service accumulated by
client SRBs while a client address space is swapped out is not lost; rather, it is accumulated
to the client address space when the client is swapped in again. As a consequence, the
service accumulated by client SRBs while the client address space was swapped out might
trigger a period switch at swap in, but it does not do so before swap in.

You create client SRBs by using an option on the macro IEAMSCHD. This macro schedules
an SRB routine for asynchronous execution. The SRB can be scheduled for execution in any
address space.

Enclave SRBs are preemptible dispatchable units, where the unit of priority and account is an
enclave and not an address space (client or server). However, due to the lack of
addressability in the enclave, the enclave SRBs must still run in an address space.

Enclave SRBs are also created by the macro IEAMSCHD. This macro creates the SRB and
joins it into the enclave. Refer to “Enclave” on page 34 for more information about enclaves.
Chapter 2. How WLM works 33

Enclave
Enclaves introduced a much more direct way of managing transactions that span multiple
regions. An enclave is an entity that encapsulates the execution units (TCBs and SRBs) that
execute programs on behalf of the same work request.

You can also think of an enclave as a BUoW without address space boundaries. It is close to
the user view of a transaction.

The types of enclaves
The types of enclaves are:

� Independent enclaves: These are true WLM transactions separately classified and
managed in a service class. Distributed Data Facility (DDF) uses only independent
enclaves. They represent a new transaction that has no association with a particular
address space from a priority and account point of view.

� Dependent enclaves: These are a logical extension of an existing address space and
inherit service class from the owner address space. They continue an existing transaction
that is running under dispatchable units not associated with the current home address
space.

When an enclave spans a system boundary in a sysplex, it is called a multisystem enclave.
Multisystem enclaves are made with the original enclave and foreign enclaves, which we
describe in the next section.

Enclave characteristics
The enclave characteristics are:

� Enclaves are created by WLM on behalf of an address space owner, and one address
space can own many enclaves.

� Enclaves maintain the priority and account information of the associated dispatchable unit.

� One enclave can include many dispatchable units (SRBs and Tasks) executing
concurrently in multiple address spaces called participants; although, it is much more
common to have only a dispatchable unit per enclave. Enclave SRBs are preemptible (like
tasks) by higher priority work. All its dispatchable units are managed as a group.

� WLM manages enclave dispatching and I/O priority.

� Enclaves do not own storage.

� CPU accounting in SMF records:

– For a dependent enclave, the CPU service consumed is accumulated in the SMF30
record of the owning address space and the SMF72 record of the owning address
space service class period.

– For an independent enclave (representing an individual WLM transaction), transaction
count and resource usage are recorded in the SMF72 record (service class and report
class). SMF30 records are accounted to the address space where the enclave runs.

� Multisystem enclaves is the sysplex scope of an enclave. This implementation requires a
coupling facility structure named SYSZWLM_WORKUNIT, as shown in Figure 2-2 on
page 35.
34 System Programmer’s Guide to: Workload Manager

Figure 2-2 Multisystem enclaves

2.3 Understanding the algorithms
In this section, we provide explanations about what resources need to be managed and
which algorithms are used to understand their usage. The resources involved during the
decision-making process are CPU, I/O, and storage management.

Workload management
Workload management is a process of tracking the delay states and granting or denying
access to system resources through the use of priorities. The definition of the delays for each
type of resource are:

� CPU delays: Are ready to run, but not dispatched because of active work at the same or
higher dispatching priority.

� Storage delays: There are several reasons that cause a delay for storage. Among them
are:

– Delayed for a page-in operation from auxiliary storage (AUX)
– Swapped out, either logically or physically, with no MPL available for a swap in
– Swapped out physically and delayed because of AUX page-in operations

� I/O delays: I/Os UCB Queue, Channel Subsystem busy, Director Port busy, Control Unit
Busy, or Device busy conditions.

Beside the physical resource delays, such as CPU, storage, and I/O, there are other tracked
delays such as a job that is delayed because of the lack of an appropriate initiator, or in
general, a transaction that is delayed because of the lack of a server address space. We
cover these delays later in this chapter.

CEC1 CEC2

SYSZWLM_WORKUNIT

AS1 AS2 AS3

Multisystem EnclaveMultisystem Enclave

TRX1TRX1
Chapter 2. How WLM works 35

There are different algorithms to manage the different resource types. WLM controls the use
of CPU through dispatching priority and the use of I/O through I/O priority. Storage usage is
controlled using storage targets, a swap protect time target, and the MPL swap mechanism.

2.3.1 Performance index
WLM maintains a Performance Index (PI) for each service class period to measure how the
actual performance varies from the goal.

Because there are different types of goals, WLM needs to compare how well or how poorly
workloads in one service class (SC) perform compared to other workloads. The comparison
is possible through the use of the PI. The PI allows WLM to compare a workload having a
velocity goal with a workload having an average response time goal and with a workload
having a percentile response time goal in order to determine which is farthest from the goal
(the highest PI).

The following list explains the meaning of the PI values:

� PI = 1 means that the SC period is exactly meeting its goal.
� PI > 1 means that the SC period is missing its goal.
� PI < 1 means that the SC period is beating its goal.

In the sysplex, every SC period can have two types of PIs:

� One or more local PI. There is one local PI for every z/OS image where the SC period
work is running and represents its performance in each local system in the sysplex.

� One sysplex PI. It represents the SC period global performance across all the systems in
the sysplex.

The global PI is reported in the RMF Workload Activity report and can be easily interpreted. If
it is below 1 the goal is overachieved; if it is equal to 1 the goal is exactly met; and if it
exceeds 1, then the goal is missed. Depending on the RMF options, the local PI can also be
reported.

Through services provided by WLM, performance data is periodically exchanged between
sysplex systems in goal mode. The information is sent between the systems and allows WLM
to construct an approximate view of the status of the sysplex through the calculation of
sysplex PIs. The aggregate view enables WLM algorithms such as policy adjustment to make
trade-offs within each individual system. The data exchanged includes:

� Response times and execution using and delay information for each service class period
to allow each local WLM to calculate the sysplex PIs for each service class period

� CPU service consumption information for each Resource Group, to globally enforce the
capping and the protection algorithms

� Information identifying the active service policy

Sysplex PI and local PI
The sysplex PI tells us how well the work is performing in the sysplex. This information is
displayed in most performance monitors and is used for adjusting resources.

The local PI tells how well the work is performing on the local system. This information is
available in performance monitors and is also used for adjusting resources.

They are both important. The existing algorithms treat them similarly:

� Work in a service class that is achieving its goal on one system will not ignore the fact that
work in the same service class is not achieving the goal on other systems.
36 System Programmer’s Guide to: Workload Manager

� The sysplex PI is used first for importance 1 work; then the local PI is used for importance
1 work. This could be a local PI for other service class periods than the one selected
because of the high global PI. Then, this search continues for other importance works.

� So, the local PI is always used and not overruled by the sysplex PI.

This procedure helps you manage installations where heterogeneous transactions run in the
same service class but on different systems. A service class is identified as a receiver when
its global PI of an Importance 1 service class period is less than 1 (“happy”) but the local PI is
greater than 1.

Performance index evaluation in a sysplex
The PI is periodically calculated. The local PI and the sysplex PI are maintained for each
service class period.

The policy adjustment loop (see the algorithm parts 1 on page 41 through 4., “The process is
repeated for each lower Importance level.” on page 41) uses the sysplex PI at the beginning
of each interval (every 10 seconds) to decide whether there is an adjustment that it can take
to improve the sysplex PI for the most important service class period. The policy adjustment
loop is performed a second time, this time focusing on the local service class period PI. An
adjustment is made, if possible, to help a service class period from the local system
perspective. This is to compensate for overachievement on one system cancelling out the
effects of poor performance on other systems processing the same service class periods.

Performance index calculation
This section explains how the PI is calculated according to the type of goal. For every type of
goal, the achieved value is then compared to the goal value. The achieved value is calculated,
and the goal value is set by the user in the WLM ISPF application. Now, we explain the
calculation of the achieved value:

� Average response type goal PI calculation

The average response time value is calculated by dividing the sum of response time by the
number of ended transactions.

This gives the Average response time field, which corresponds to the achieved
performance of the service class.

Then, this field is divided by the goal response time to give the performance index of this
service class period.

In Example 2-1 on page 37, the ACTUAL field (under TRANS.-TIME) shows that the
average response time is 0.157 seconds for the 432072 ended transactions.

The goal of the service class is 0.180, as shown in the GOAL field. The PI is calculated for
the sysplex (*ALL) and for each system in the sysplex by dividing the achieved average
response time (either in the sysplex or on the single system) with the target average
response time as illustrated in the formula:

Example 2-1 Average response time RMF report

 TRANSACTIONS TRANS.-TIME HHH.MM.SS.TTT --DASD I/O-- ---SERVICE---- --SERVICE RATES-- PAGE-IN RATES ----STORAGE----
 AVG 0.00 ACTUAL 157 SSCHRT 0.0 IOC 0 ABSRPTN 0 SINGLE 0.0 AVG 0.00
 MPL 0.00 EXECUTION 0 RESP 0.0 CPU 0 TRX SERV 0 BLOCK 0.0 TOTAL 0.00
 ENDED 432072 QUEUED 0 CONN 0.0 MSO 0 TCB 0.0 SHARED 0.0 CENTRAL 0.00
 END/S 720.32 R/S AFFINITY 0 DISC 0.0 SRB 0 SRB 0.0 HSP 0.0 EXPAND 0.00
 £SWAPS 0 INELIGIBLE 0 Q+PEND 0.0 TOT 0 RCT 0.0 HSP MISS 0.0
 EXCTD 0 CONVERSION 0 IOSQ 0.0 /SEC 0 IIT 0.0 EXP SNGL 0.0 SHARED 0.00

PI Average Response Time
Goal Average

---=
Chapter 2. How WLM works 37

 AVG ENC 0.00 STD DEV 6.153 HST 0.0 EXP BLK 0.0
 REM ENC 0.00 APPL % 0.0 EXP SHR 0.0
 MS ENC 0.00

 ---RESPONSE TIME--- EX PERF AVG --USING%-- ------------ EXECUTION DELAYS % ------------- ---DLY%-- -CRYPTO%- %
 HH.MM.SS.TTT VEL INDX ADRSP CPU I/O TOTAL UNKN IDLE USG DLY QUIE
 GOAL 00.00.00.180 AVG
 ACTUALS
 *ALL 00.00.00.157 N/A 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 OS0B 00.00.00.125 N/A 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 OS0C 00.00.00.214 N/A 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 OS0D 00.00.00.150 N/A 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 OS0E 00.00.00.163 N/A 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

� Velocity goal type PI calculation

The execution velocity percentage is calculated by dividing the number of the using
sample by the sum of the using and delay samples.

The using and delay samples are found in the Execution velocity RMF report.

In Example 2-2, the using samples percentages are found in the fields USING % CPU and
USING % I/O. Their sum is 20.1% + 21.7%, or 41.8%. The total of all the delay samples is
given in the field EXECUTION DELAYS % TOT; the value is 40.0%.

The achieved execution velocity is then 41.8% / (41.8% + 40.0%) = 51.1%.

The goal is an execution velocity of 30%.

The PI is then calculated by dividing the goal execution velocity by the achieved execution
velocity. In our example, the calculation is 30% / 51.1%, for a total of a PI of 0.6 (the result
of the division is rounded). This formula is:

Example 2-2 Execution velocity RMF report

TRANSACTIONS TRANS.-TIME HHH.MM.SS.TTT --DASD I/O-- ---SERVICE---- --SERVICE RATES-- PAGE-IN RATES ----STORAGE----
 AVG 2.97 ACTUAL 1.45.029 SSCHRT 899.2 IOC 223323 ABSRPTN 58154 SINGLE 0.0 AVG 3966.86
 MPL 2.97 EXECUTION 1.44.561 RESP 0.9 CPU 8820K TRX SERV 58154 BLOCK 0.0 TOTAL 11780.8
 ENDED 12 QUEUED 468 CONN 0.6 MSO 77155K TCB 425.0 SHARED 0.0 CENTRAL 11780.8
 END/S 0.02 R/S AFFINITY 0 DISC 0.0 SRB 153458 SRB 7.4 HSP 0.0 EXPAND 0.00
 #SWAPS 0 INELIGIBLE 0 Q+PEND 0.3 TOT 86352K RCT 0.0 HSP MISS 0.0
 EXCTD 0 CONVERSION 262 IOSQ 0.0 /SEC 172707 IIT 3.1 EXP SNGL 0.0 SHARED 0.00
 AVG ENC 0.00 STD DEV 50.588 HST 0.0 EXP BLK 0.0
 REM ENC 0.00 APPL % 87.1 EXP SHR 0.0
 MS ENC 0.00

 VELOCITY MIGRATION: I/O MGMT 51.1% INIT MGMT 51.0%

 ---RESPONSE TIME--- EX PERF AVG --USING%- ---------- EXECUTION DELAYS % --------- ---DLY%-- -CRYPTO%- ---CNT%-- %
 HH.MM.SS.TTT VEL INDX ADRSP CPU I/O TOT CAPP CPU I/O UNKN IDLE USG DLY USG DLY QUIE
 GOAL 30.0%
 ACTUALS
 ITS1 51.1% 0.6 1.0 20.1 21.7 40.0 18.0 15.4 6.6 18.1 0.0 0.0 0.0 0.0 0.0 0.0

� Average response time with percentile goal type PI calculation

The calculation of the achieved response time is somewhat complicated for this type of
goal (RMF does it for you). In this section, we explain it.

Let us take Example 2-3 on page 39 as a base reference.

WLM keeps response time distribution data in buckets for service class periods that have
a response time goal specified. These buckets are counters that keep track of the number
of transactions ended within a certain response time range. The response times are
stored in a structure that contains 14 buckets. These buckets exist per service class
period:

– Bucket range values

PI Goal execution Velocity
Actual execution Velocity
---=
38 System Programmer’s Guide to: Workload Manager

The bucket’s value ranges from half of the goal response time value to four times the
goal response time value. In our case, the goal is 70% of transactions with a response
time of 0.600 seconds. The buckets value will range from 0.300 seconds to 2.400
seconds.

The sixth bucket contains the number of transactions that ended within the goal
response time value, 0.600 seconds in our case. In our example, 84.6% of the
accumulated transaction number ended within the goal response time value. The
bucket itself shows that 475 transactions representing 1.6% of the total number of
transactions have a response time of 0.600 seconds.

The thirteenth bucket contains the number of transactions that ended within four times
the goal response time value (2.400 seconds).

The last bucket contains the transactions that ended at more than four times the goal
response time value (more than 2.400 seconds).

� The NUMBER OF TRANSACTION CUM TOTAL field accumulates the transactions at
each bucket.

� The maximum value for a PI in a percentile goal is 4.0 due to the way the buckets are
organized. Bucket 14 always corresponds to 400% of the value of the goal. The minimum
value for the PI is obviously 0.5 due to the bucket range organization.

� The RESPONSE TIME DISTRIBUTION CUM TOTAL field contains the accumulated
percentage of transactions at each bucket. To calculate the PI, WLM checks this field until
it finds the goal percentile or the immediate above value. In our case, the goal percentile is
70%. The percentile immediately equal to or above is 74.9%, located in the first bucket.
Then, WLM picks the response time of this bucket, 0.300 seconds in our case, and divides
it by the goal response time, which is 0.600 seconds. The PI of this service class is then
0.5, as shown in the RMF report.

� The general formula is then:

Example 2-3 Average Response Time with Percentile RMF Report

---RESPONSE TIME--- EX PERF
 HH.MM.SS.TTT VEL INDX
 GOAL 00.00.00.600 70.0%
 ACTUALS
 *ALL 84.6% N/A 0.5
 NA01 100% N/A 0.5
 PA01 100% N/A 0.5
 QA01 84.4% N/A 0.5

 ----------RESPONSE TIME DISTRIBUTION----------
 ----TIME---- --NUMBER OF TRANSACTIONS-- -------PERCENT------- 0 10 20 30 40 50 60 70 80 90 100
 HH.MM.SS.TTT CUM TOTAL IN BUCKET CUM TOTAL IN BUCKET !....!....!....!....!....!....!....!....!....!....!
 < 00.00.00.300 22925 22925 74.9 74.9 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
 <= 00.00.00.360 23681 756 77.3 2.5 >>
 <= 00.00.00.420 24338 657 79.5 2.1 >>
 <= 00.00.00.480 24900 562 81.3 1.8 >>
 <= 00.00.00.540 25420 520 83.0 1.7 >>
 <= 00.00.00.600 25895 475 84.6 1.6 >>
 <= 00.00.00.660 26283 388 85.8 1.3 >
 <= 00.00.00.720 26662 379 87.1 1.2 >
 <= 00.00.00.780 26992 330 88.1 1.1 >
 <= 00.00.00.840 27271 279 89.0 0.9 >
 <= 00.00.00.900 27508 237 89.8 0.8 >
 <= 00.00.01.200 28313 805 92.4 2.6 >>
 <= 00.00.02.400 29727 1414 97.1 4.6 >>>
 > 00.00.02.400 30626 899 100 2.9 >>

PI Percentile actual
Percentile goal

---------------------------------------=
Chapter 2. How WLM works 39

Performance index of discretionary goal type
A discretionary service class period is defined to have a PI equal to 0.81. A discretionary
service class period is also called a universal donor, because its PI indicates that it is always
beating its goal.

2.3.2 Policy adjustment function
WLM constantly measures the systems. At certain intervals, it combines the measurement
results to a complete picture, calculates how work progresses, and compares the actual
achieved results with the goal definitions to find out whether adjustments are necessary.

The measurement of the system state takes places every 250 milliseconds. At these points,
WLM captures the delay and using states of all dispatchable units in the system and
resources that it manages. WLM basically manages CPU, DASD I/O devices, the system
storage, server address spaces, and to some extent, resource serialization such as GRS
enqueues. The states for these resources can be quite varied. While for CPU, there is
currently one using and one delay state, it is possible to observe multiple cases why work is
delayed because of storage, for example, paging delays, shortages of the page data sets,
and much more.

Every 10 seconds, WLM summarizes the system state information and combines it with
measured data such as CPU service or transaction end times. At this point, WLM learns the
behavior of the workloads and the system. It keeps a certain amount of historical data in
storage and maintains graphs learning the relationship between dependent functions in the
system.

The following describes an example for such a graph. It is possible to learn from the time that
work requests were delayed because they were swapped out, how many address spaces
ideally should be in storage. The delay per transaction while the work unit was not in storage
can be measured. This is a function of the fraction of ready users that are in storage, usually
named the Multiprogramming Level (MPL). By plotting the MPL delay per transaction over the
number of ready users with MPL slots, it is possible to learn at which point few MPL slots will
cause a drastic increase in MPL delay. In addition, it can be learned at what point adding
more MPL slots stops having a positive effect on achieving the service class goals. Such a
plot can be used in a decision algorithm to determine the effect of increasing or decreasing
the number of ready users in storage.

There are many more examples. At this level, notice that everything WLM does is based on
measured and sampled data, which is combined to learn the relationship between workloads
and resources in the system. After this step, the achieved response times and achieved
execution velocities are compared with the goal definitions. The result is called the
performance index (PI), which is the base for all further decisions in the system. The PI is
defined as follows:

The formula for percentile response time PI is more complex, and we will discuss it later.

The next step is to visit all goal achievements and to identify service classes that do not meet
their goals as potential receivers for goal adjustments. Figure 2-3 on page 41 shows the basic
decision flow. All service classes are logically sorted by their importance and their goal
achievement. In order to find the service class period receiver, WLM running on one z/OS
needs to determine the global PI for all active service class periods in its system. These

Execution Velocity Goal : PI Execution Velocity Goal
Achieved Execution Velocity
---=

Response Time Goal : PI Achieved Response Time
Response Time Goal

---=
40 System Programmer’s Guide to: Workload Manager

figures are calculated by all the WLMs in the sysplex by exchanging information data through
XCF. After that, the receiver service class period is selected through the algorithm:

1. Importance=1 and global PI > 1.
2. Importance=1 and local PI > 1.
3. Importance=2 and global PI > 1.
4. The process is repeated for each lower Importance level.

Then, WLM searches one or multiple donors that also use the resource. While receivers are
searched from highest to lowest importance, donors are searched by examining discretionary
work first and then from the lowest to the highest PI of “happy” service class periods.
Importance does not contribute to the algorithm when the service class periods are “happy”.

If donors are found, WLM calculates and assesses the changes for the receivers and donors.
At this point, it uses the internally captured and learned data, for example, the plots as
previously described. The assessment logic calculates the improvement for the receiver and
the expected degradation for the donors. If the logic concludes that the change is beneficial, it
executes it and the adjustment is completed for this interval.

Figure 2-3 shows this algorithm.

Figure 2-3 The WLM policy adjustment algorithm

Note: Only one RECEIVER is managed at a time.

Are there other receivers?

Select Receiver

Determine Bottleneck

Fix Bottleneck for selected receiver

1. Select Donor, one or multiple using the resource
2. Assess changes on receiver and donors
3. Adjust access and usage of resources if assessment

shows a positive result

Has a change been made?

Are there other bottlenecks?

End

Yes

Yes

Yes

No

No
Chapter 2. How WLM works 41

There are many possibilities why a change is beneficial and can be made. The easiest
possibility is that the receiver is an important service class and the donors have lower
importance. In that case, it can be safely assumed that the change is meaningful. But, it is
also possible that a more important service class can become a donor for a less important
service class, for example, if the more important service class overachieves its goals and the
projections show that an adjustment will improve the less important work and still allow the
more important work to easily meet its goals. There are also interesting cases where the
receiver and the donor have the same importance and both do not meet their goals. In these
cases, WLM will try to bring the goal achievement of both closer together, thus, improving the
overall throughput of the system.

When a change has been made, the logic completes, new data is collected, and the
evaluations and assessment run after ten seconds again. If no change was possible, WLM
first tries to examine other potential bottlenecks of the receiver and then continues with lesser
important work until one or no change could be made.

Impact of the number of service class periods
According to the description of the Policy Adjustment algorithm, it is obvious that the number
of service classes periods can impact the efficiency of the process.

Too many service classes can cause some work to not get attention in time, so that the
system makes trade-offs between work with similar goals and characteristics.

There has been quite a bit of confusion regarding the number of service classes that you
might want to define in a WLM policy. The value that has been stated often by many is 30,
and the number has been related to WLM overhead. To clarify this a bit, the value refers more
specifically to the number of ACTIVE service class periods, and it is not an issue of overhead.
The recommended value is to keep the number of active service class periods between 25
and 35.

Because of the sampling nature of WLM, the philosophy has been to combine workloads into
fewer service classes and allow WLM to manage similar work appropriately. The issue with
respect to the number of service class periods is that WLM only makes one change during
every 10-second interval. If you have too many service class periods active, then lower
importance work might get delayed because WLM is unable to make adjustments in a timely
manner. So, it is a matter of responsiveness, not overhead, that causes us to recommend
25–30 service class periods.

Having too many service class periods with little activity in these periods means that there is
not enough work defined to these service class periods. In these cases, you might experience
highly variable performance indexes; combining similar work into fewer service classes helps
alleviate this situation. You can have a policy with more than 30 service class periods;
however, the number of active service class periods in a system should not be more than 30.
42 System Programmer’s Guide to: Workload Manager

Figure 2-4 is the sample JCL to run the RMF Postprocessor Sysplex report by service class
period. Run this report for a whole production cycle on your system. In this example, we run
the report for a 9 hour interval on December 12, 2006.

Figure 2-4 RMF Postprocessor Sysplex report sample

Example 2-4 shows that there is no activity in service class DDFSP7 in the sysplex.

Example 2-4 RMF report showing no activity for SC DDFSP7

z/OS V1R8 SYSPLEX SANDBOX START 12/12/2006-00.00.00 INTERVAL
009.00.00 MODE = GOAL RPT VERSION V1R8 RMF END 12/12/2006-09.00.00

REPORT BY: POLICY=WLMPOL WORKLOAD=DATABASE SERVICE CLASS=DDFSP7 RESOURCE GROUP=DDF

 CRITICAL =NONE

 ---------- ALL DATA ZERO ----------

Combine work that is similar. You can use report classes to analyze the performances of
individual workloads running in the same service class.

Donor and receiver determination
This section discusses the donor and receiver determination in a general way. For more
technical details, see “Selecting a receiver candidate” on page 45.

In order to meet the goals and requirements of the workload requests, the policy adjustment
function determines:

� Which service class periods require more resources to attain their goals.

� WLM selects one receiver from these candidates. The receiver is the most important work
in terms of service class period that needs help meeting its goal.

� Which resource bottlenecks (delays) are affecting the receiver. A service class period that
needs help must already have detected delays. A service class period might be missing its
goal, but if the delays are for resources that the WLM does not control, such as locks or
enqueues, then the service class cannot be helped, and is not a receiver.

� Which donors can donate resource to the receiver or exchange priorities.

In the policy adjustment loop, WLM checks:

� If PI>1, then the service class period is eligible for help and is a candidate to be a
RECEIVER.

� If PI<1, then the service class period is a potential DONOR.

Remember that a service class is selected by business importance and by worst PI.

//JOBNAME JOB (ACCOUNT),'PGMRNAME',CLASS=A
//RMFPP EXEC PGM=ERBRMFPP
//MFPMSGDS DD SYSOUT=*
//SYSIN DD *
 DATE(12122006,12122006)
 DINTV(0900)
 RTOD(0000,0900)
 SYSRPTS(WLMGL(SCPER))
 SYSOUT(A)
/*
Chapter 2. How WLM works 43

The donor and receivers are address spaces and enclaves, but WLM manages resources for
a receiver/donor service class period, not a receiver/donor address space or enclave.

WLM uses resource plots to project a recipient benefit and a donor cost. The net benefit
must be positive before a resource adjustment takes place.

In order to derive the net value of the receiver/donor relationship, WLM creates the following
plots to track how well work is processed:

� System paging delay plots
� Period MPL delay plot
� Period ready user average plot
� Period swap delay plot
� Period paging rate plot
� Period proportional aggregate speed plot
� Address space paging plot
� I/O plots

For workloads containing subsystem transactions, such as CICS and IMS, where the
response time goal is assigned to the transactions using CICS/IMS subsystem
classification rules (transaction mode), the priorities of the address spaces are
determined dynamically by the performance goal in the service class (called external SC)
of the transactions that these address spaces are processing:

� The priorities (I/O and CPU) of the address spaces are determined by the need of the
most important and most unhappy (PI > 1.0) transactions running in those address
spaces. Remember that:

– The same transaction can run in multiple address spaces.
– One address space can run transactions from multiple external service classes.

In this environment, there are chances of free rides, where less important happy
transactions are running in the same address spaces and as a consequence have a lift in
their performance. You can decrease the effect of the free ride by using the WLM option
as a routing algorithm in the CP/SM; therefore, WLM will identify the best
application-owning region (AOR) to route the transaction. WLM will try to locate the AOR
with same goal transactions:

� Only average response time and percentile response time can be specified as goal. It is
not possible to measure the Using and Delay states of the CICS transactions.

� CICS/IMS subsystem is used in classification rules to associate with a service class.

� Periods or Resource Group capping are not allowed, because it is not possible to derive
the service units consumed by a CICS transaction.

� Subsystem work manager delays describing internal states of a transaction are reported
by RMF.

� RMF shows transaction response time and transaction rates associated with the SC
defined in transaction mode.

To implement these functions, WLM needs to implement two types of donors and
receivers:

� Goals Receivers/Donors, with the external service classes periods described above.

� Resource Receivers/Donors, with the service class periods representing the CICS/IMS
address spaces where the transactions are executed. These service classes are
generated internally by WLM and are called dynamic internal service (DIS) class periods.
The delay and using states of these service classes are proportioned to the external
service class periods based on the time the address spaces (ASs) of the DIS class period
44 System Programmer’s Guide to: Workload Manager

were serving transactions from the external service class period. Based in these delays
and the PI of the external service class period, the priorities of the address spaces of the
DIS class periods are raised (resource receiver) or decreased (resource donor).

In summary, the goal receiver and donor are the CICS/IMS transactions in the external
service class with goals and the resource receiver and donor are the CICS/IMS address
spaces with delays and priorities.

Selecting a receiver candidate
The following describes the criteria used to select a candidate service class to be a receiver.

If one of the criteria is met, then the search stops, because it is the aim of the routine to find
only one receiver at each invocation. This is the order in which the evaluation takes place:

1. A service class period that is not meeting its goal that is running in a Resource Group that
is running below the Resource Group service rate minimum. The best receiver is chosen
by the largest amount below Resource Group service minimum and by most importance
and by highest PI.

2. A service class period not meeting its goal, running in a Resource Group, between
Resource Group service minimum and maximum or a service class period not meeting its
goal and not running in a Resource Group. The best receiver is chosen by most
importance and highest PI within importance.

3. A discretionary period (universal donor) with a Resource Group service below minimum.
The best receiver is chosen by largest amount below Resource Group service minimum.

4. A service class period meeting its goal. The best receiver is chosen by largest PI.

As you can see, if you do not use Resource Groups, only steps 2 and 4 are considered.

Periods for certain service classes are not candidates for being a receiver because in the past
they were defined as receivers without much improvement in their PI. Those service class
periods are skipped for a while to avoid wasting effort. This usually only happens when the
installation sets a very difficult goal.

Sometimes, a Resource Group is skipped even when the CPU consumption is below the
minimum, because the analysis of the local data in every z/OS image indicates that another
image can do better than this one. This avoids having all the systems overreact to such a
situation.

If a receiver service class (ESC) is associated with a CICS address space or an IMS MPR
address space (DISP) running important transactions with a PI greater than one, together
with less important CICS transactions, then resources are given to the DISP to help the
important ESC. Obviously, the less important ESCs also benefit from these resources.
We refer to this as giving the low importance work a “free ride.” For more information
about ESC and DISP, see “Server topology” on page 67.

Find a receiver bottleneck
Generally, in order to find a bottleneck in the receiver, the general resource delays are
analyzed:

� Processor delay
� Swap page-in delay
� MPL (OUTR) delay
� I/O delay (DASD or Tape device delay)
� Server address space delay
� Paging delay (local, common, memory, or hiperspaces)
Chapter 2. How WLM works 45

If none of these resources is a bottleneck, such as when the delay is due to capping, locks,
enqueue, or operator, then the receiver cannot be helped and the algorithm selects another
receiver candidate by going back to the select a receiver step.

An important distinction among the delay sample types is the way in which they are
counted. CPU delay samples, I/O delay samples, and paging delay samples are counted
by dispatchable units (multi-state). Swap-related delays (MPL and swapping) are counted
per address space, regardless of the number of ready dispatchable units (single-state).
Just as a reminder, RMF in workflow% calculations uses a single-state mode. This
difference might cause the following effect, in a multi-task swappable workload, WLM
tends to fix problems for swapped in work before allowing the swap in of swapped out
work. This happens because CPU delays and paging delays tend to dominate over swap
and MPL delay samples.

There are two cases, non-server and server, when selecting a receiver:

� Non-server case

The primary way to help a non-served receiver is to alleviate one of the receiver’s delay
reasons.

If a cross-memory delay is returned (page fault suffered by the PC target address space),
then the target address space is identified. This is so that the cross-memory fix routine can
help the target address space by protecting its working set, which in turn should help the
receiver.

� Server case

In order to find a bottleneck for a receiver-served service class (ESC), also called goal
period, the following steps are executed:

a. Use the topology to understand the proportion of time (weights) that each server DISP
spent serving the chosen receiver ESC.

b. Calculate the delay samples for the receiver ESC.

c. The receiver ESC is not associated specifically with address spaces, and only address
spaces can be sampled when looking for delay reasons. To handle this, the delay
samples of the server DISP address spaces are apportioned to the receiver ESC
based on the previous calculated weights. In other words, the delay samples for the
server DISP address spaces are scaled by the proportion of time that the server DISP
was serving this receiver ESC in relation to the amount of time that the server period
was serving any DISP.

d. Find the resource with the largest delay in the receiver’s ESC. Select the related DISP.
This is the service class period passed to the fix routines.

2.3.3 CPU management
Access to the CPU is controlled through dispatching priorities. The dispatcher maintains a
queue of ready work units, which is sorted in priority order. This section explains how this
queue is managed by WLM. WLM assigns dispatch priorities to service classes, based on:

� Need of the service class:

– Goal achievement, expressed by performance index
– CPU consumption

� Tries to assess what a change means:

– Basically moves service classes to higher or lower dispatch priorities
– Calculates the change in service consumption
– Calculates the change in goal achievement
46 System Programmer’s Guide to: Workload Manager

– Changes dispatch priorities if it is beneficial for more important (higher importance)
work

Dispatching priorities assignment
A dispatching priority is a number from 0 to 255 associated with a dispatchable unit of work
(TCBs or SRBs). It is placed in an address space or in an enclave control block (for more
information about enclaves, refer to “Enclave” on page 34). It indicates the priority of these
dispatchable units for getting CPU service. In goal mode, dispatching priorities are not
assigned by the installation, but by WLM.

Table 2-1 shows the range of dispatch priorities prior to z/OS 1.8 while Table 2-2 shows the
new dispatching priorities as of z/OS 1.8.

Table 2-1 Dispatching priorities prior to z/OS 1.8

Table 2-2 Dispatching priorities as of z/OS 1.8

The dispatch priority of 255 is reserved to keep the system running and to provide system
work preferential access to the CPU. All system work should run in the predefined service
class SYSTEM, which always gets a dispatching priority of 255.

Support work and system-related work can be associated with another predefined service
class SYSSTC and SYSSTC1-SYSSTC5. Work in SYSSTC and SYSSTC1-5 gets
dispatching priority 254.

Note: You cannot enforce a certain behavior by setting unrealistic goals. In general, you
should base goals on observations and knowledge of the work. This is especially important
for execution velocity goals.

255 FF SYSTEM

254 FE SYSSTC

253 FD Small consumer

252-208 FC-D0 Dynamically-managed
dispatch priorities

207-202 CF-CA Not used

201-192 C9-C0 Discretionary

191 BF Quiesce

255 FF SYSTEM

254 FE SYSSTC, SYSSTC1-5

253-249 FD-F9 Reserved

248 F8 Small consumer

247-203 F7-CB Dynamically-managed
dispatch priorities

202 CA Not used

201-192 C9-C0 Discretionary

191 BF Quiesce
Chapter 2. How WLM works 47

Dispatching priorities 253-249 are reserved for future use.

Below this starts the range of dispatch priorities that are dynamically assigned to user-defined
service classes. These are all service classes with an importance of 1 to 5. One special
dispatch priority is used for service classes that consume very little CPU service. Because it
is difficult for WLM and not beneficial for the whole system to deal with work that only requires
very little CPU, WLM gives this work a dispatch priority just below the two system-related
dispatch priorities.

All dispatchable units of the same service class period have the same base dispatching
priority (with the exception of the mean-time-to-wait group for discretionary work).

The dispatching order of all dispatchable units with the same dispatching priority in the same
or in different service class periods are periodically rotated.

Dispatching priority 202 is not used and the range from 192 to 201 is used for discretionary
work. All discretionary work is managed by a mean time to wait algorithm, which simplified
gives a higher dispatch priority for work using I/O and a lower dispatch priority to work
demanding a lot of CPU. The last used dispatch priority is 191. It is assigned to quiesced
work. That also means that quiesced work can run if the CPU is not busy. It also means that
all other work can access the CPU before it.

The interesting range is from 203 to 247. WLM assigns these dispatch priorities to the
user-defined service classes that have a goal. The assignment is based on the CPU
consumption, CPU demand, and goal achievement of the work. In the previous chapter, we
saw that WLM determines through the performance index which service classes meet and
which miss their goals. In the next step, WLM starts to look for a receiver by starting with the
most important service class with the worst PI. Then, it determines the resource for which an
adjustment is required. For CPU, that means that the service class must show a high number
of CPU delays. Now, WLM looks for donors. Based on the captured data, WLM knows how
much CPU is consumed by each service class and how much CPU is consumed by all work
at the same dispatch priority. From the CPU delays and average time that the work used the
CPU, it is possible to calculate the demand that the work has for the CPU. In order to assign
a new dispatch priority to a service class, WLM logically moves the service class to higher
dispatch priority and then projects the change of CPU consumption, demand, and delays for
all service classes at a lower and the same new dispatch priority of the work that is moved up.
If that is not sufficient, WLM looks in the next step whether some service classes can run with
a lower dispatch priority and does the same calculations. The algorithm continues until a
positive result can be projected, meaning that the performance of the receiver gets better and
no service classes with a higher importance are badly affected, or until WLM concludes that
no change is possible.

Note: SYSSTC1-SYSSTC5 are called Process entitlement groups, and IBM does not
recommend that you use them. You might want to classify work into them and use them as
report classes. The dispatching priority is the same as for SYSSTC.

Note: The SPM qualifier in the classification rules helps automatically to define this work in
the proper service classes.
48 System Programmer’s Guide to: Workload Manager

An example of the CPU management algorithm
Figure 2-5 depicts this algorithm. The example assumes nine service classes, and the policy
adjustment algorithm selected service class I as a potential receiver of the CPU service. In
the first step, it moves I to higher dispatch priority. Together with I, there are two other service
classes, G and H, at the same dispatch priority. After the first move up for I, the calculations
show that H also has to move up because otherwise no overall value of the move for service
class I can be projected. This projection is named net value, meaning that the overall change
does not harm work of higher importance and is still beneficial for the receiver. But this move
does not show enough receiver value, meaning that the change does not help I enough to
improve its performance. In the next step, WLM tries to move work with higher dispatch
priorities to lower dispatch priorities. While the move down for C is acceptable, the move
down for B violates the net value test. Finally, the move down of A passes the net value test,
but again we do not have sufficient receiver value for I. In the third step, WLM again attempts
to move the receiver up. In this case, the move for service class I to dispatch priority 249
gives enough receiver value for I and all other classes pass the net value tests. Now, WLM
concludes that the change is meaningful and adjusts the dispatch priorities of the work. In
case no valuable change can be projected, all intermediate calculations are set back, and no
change occurs.

Figure 2-5 WLM priority adjustment

When we look at this example, we can also observe that together with service class I, service
class H was moved to a higher dispatch priority. This became necessary because the first

Note: If I/O Priority management is not activated, the DP of the service class is used as I/O
priority. If I/O priority is activated, WLM calculates an I/O priority based on demand, goals,
and goal achievement for each service class using I/O devices. The I/O priority is
independent from the CPU dispatching priority. There are eight I/O dispatching priorities.
An assessment between two or more service classes takes place when these service
classes use the same set (or subset) of devices. So, if one service class misses its goal
and policy adjustment finds out that I/O is the biggest problem, WLM tries to find other
service classes that use the same set (or a subset) of the devices for the service class
missing the goals. Then, the usual assessment logic starts to find out whether a change in
I/O dispatching priority is possible between them.

A B C A B C B

Priorities

246

244

242

240

D

E F

G H I

E F H

D B A D C

E F H I

G

B

I

A D C I

E F H

GG

1. Move I up
2. Move H up

for net value
secondary
receiver

Receiver passes
receiver value
all classes pass
net value
Chapter 2. How WLM works 49

move showed that H would have been degraded too much. In the end, H is below I, but now
competes with service classes E and F at the same dispatch priority and therefore has better
and sufficient access to the CPU. In the end, the picture has changed to some extent. The
moves are calculated based on the current and the expected CPU consumption, which is
derived from the CPU demand of the service classes and the amount of CPU that is available
at each dispatch priority level.

Discretionary goals
A discretionary goal means “do the best that you can,” and usually applies to batch jobs.

Furthermore, this type goal can also offer other advantages, such as:

� It always runs in a low MTTW dispatching priority, thus improving CPU and I/O parallelism.

� It is the goal of the SYSOTHER service class (the non-STC default service class),
ensuring that workloads arriving to be processed that do not have classification rules
defined are not assigned to an important service class.

� It is only allowed in the last period of a service class, thus forcing long transactions to have
a low priority (aging).

� It is a candidate for individual storage control to improve the use of central storage.

� Together with the specification of a Resource Group minimum, it can be used as a sort of
throughput goal.

A discretionary goal can be seen as a buffer of CPU resources available, and capacity
planners should trigger actions when these service classes cannot have CPU resources.

How can a discretionary goal receive (at least) CPU resources:

� To assist discretionary work to get some CPU service when other types of work are
overachieving their goals (PI consistently less than one), a design is implemented by
dynamically capping the overachieving work, therefore freeing CPU cycles to be used by
the discretionary type of work.

� In WLM discretionary goal management, the receiver has a discretionary goal and the
donor does not. The donation is implemented through the use of capping. The following
conditions need to be fulfilled by a service class period in order to be considered a donor
to a discretionary service class period:

– It cannot currently be a receiver or donor.
– It cannot be a member of a Resource Group (RG).
– It cannot be a small consumer (an internal WLM qualifier).
– It cannot be the last uncapped nondiscretionary period.
– If it has a velocity goal, the goal must be less than or equal to 30%.
– If it has a response time goal, the goal must be more than one minute.
– It has a PI less than 0.7.
– It has not been a significant receiver candidate for CPU lately.

Note: This example also demonstrates why WLM only executes one change per policy
adjustment interval. One change does not mean that only the resource access for one
service class has been changed. It means that the access to a resource for a set of service
classes is changed in order to help one service class.

Note: Specifying a Resource Group to a service class can help it not become a universal
donor.
50 System Programmer’s Guide to: Workload Manager

2.3.4 Swap control
The Multiprogramming Level (MPL) is computed internally by WLM (no more external
specifications) as follows:

� MPL in_target (ITMPL)

The number of service class period address spaces required to be swapped in to make
the service class period meet its goal.

� MPL out_target (OTMPL)

The upper limit of address spaces allowed to be swapped in without causing too much of a
constraint to the central storage resource. It can be decreased to guarantee memory for
the swapped in address spaces.

These numbers are dynamically adjusted through the following routines:

� Policy adjustment routine

Based on the PI values and the reason for delay (MPL, for example), a service class
period receiver is selected to increase its MPL targets. WLM selects a service class donor
where MPL targets are decreased.

� Resource adjustment routine

Based on the utilization of the system (underutilized or overutilized), a service class period
is chosen to increase (underutilized) or to decrease (overutilized) its OTMPL by one.

Refer to 2.3.2, “Policy adjustment function” on page 40, for more information about this
subject.

Swap protect time
In goal mode, swap protect time is the time in milliseconds that a swapped out address space
remains in processor storage (central only in z/Architecture) before becoming a candidate for
auxiliary storage (AUX). It is a value set specifically for each service class period by WLM.

The policy adjustment function uses the swap protect time to guarantee processor
storage to service class periods by allowing address spaces to stay logically swapped out
in processor storage for a certain amount of time, hoping that they become ready before
being moved to AUX. Policy adjustment raises the swap protect time for a service class
period receiver when its major delay is swap in delay and it is missing goals. This delay
indicates that the address spaces belonging to the service class period are suffering
delays due to working set page-in after a swap in WLM decision. The service class
donors have a swap protect time decrease.

Resource adjustment also modifies swap protect time of some service class periods,
depending on the availability of processor storage.

2.3.5 Storage targets
In WLM, the least recently used (LRU) algorithm was implemented in the resource
adjustment function. However, in OPT keywords, there are still external options such as
MCCAFCTH (which specifies the low and the OK threshold values for the central storage
available queue).
Chapter 2. How WLM works 51

There are four types of storage targets:

� Protective Processor: A storage target to protect a target number of pages in processor
storage. Do not migrate pages to auxiliary storage (AUX) if the current working set in
processor storage is below this target.

� Restrictive Processor: A storage target to preferentially migrate pages to AUX, if the
current working set in processor storage is above this target. It is greater or equal to the
protective target.

� Protective Central: A storage target to protect a target number of pages in central storage.
Do not steal pages from central storage if the current working set in central storage is
below this target.

� Restrictive Central: A storage target to preferentially steal pages from central storage if the
current working set in central storage is above this target. It is greater or equal to the
protective target.

Storage protection in WLM
STORAGE CRITICAL is an attribute for an address space or for the classification rules for
CICS and IMS to help be protected against page stealing.

Refer to “Where to specify CPU CRITICAL” on page 87 for information about the effects of
setting this parameter.

2.3.6 I/O management
Each I/O request is performed by or on behalf of a z/OS dispatchable unit, either a TCB or an
SRB. The dispatchable units are associated with:

� Address spaces
� Enclaves

Each address space-oriented unit of work and enclave-oriented unit of work is associated
with a service class period, which becomes the focal point of the management algorithms.
For the purposes of managing I/O, WLM controls a small fixed number of I/O priority
levels.

As a reminder, the general formula of the response time is:

Response_Time = Service_Time + Queue_Time

The purpose of this chapter is to determine where WLM can use priorities to manage the
Queue_Time (QT) in a DASD subsystem.

I/O queues
There are queues where priority management can apply:

� IOS UCB Queue: This is a local queue, because it is per device and all requests come
from the same operating system. This queue can be optionally managed by WLM if I/O
Priority management is set to YES.

Note: In z/Architecture, with logical partitions (LPARs) defined with large memory, take
care to set the proper value of the MCCAFCTH parameter. Starting with z/OS 1.8, physical
swaps targeting pageable storage shortage are eliminated, and potential shortage is
resolved by frame exchanges. See APAR OA14409 for more details.
52 System Programmer’s Guide to: Workload Manager

� Channel Subsystem Queues: This is a global queue because the requests come from all
LPAR devices connected to that CPC or machine. So there can be competition among all
these LPARs to access particular devices.

� Control Unit Queue: This is a global queue because the requests come from all the LPARs
of all the connected CPCs. IBM control units starting with 2105 are able to use the I/O
priority passed by WLM in the Define Extent CCW.

DASD I/O priority
I/O priorities are managed in the range of X'F8' through X'FF', where:

� X'FF' is reserved for high priority system address spaces (service class SYSTEM).

� X'FE' is reserved for started tasks (service class SYSSTC).

� X'F8' is reserved for address spaces with a discretionary goal (service class SYSOTHER).

� The range of priorities between X'F9' and X'FD' is dynamically assigned to address
spaces and enclaves, as determined by the algorithms.

Each service class period maps to an I/O priority level. This mapping is dynamically
adjusted based upon how each service class period is meeting its goals and how the I/O
contributes to this success or failure. When the I/O supervisor (IOS) starts the I/O request
and places the I/O request on the unit control block (UCB) queue for the target device,
the priority of the request is used to place the request in priority sequence with respect to
other pending requests for the same device.

TAPE I/O priority
With z/OS 1.8, tape I/O priorities are managed in the range of X'F8' through X'FF', where:

� X'FF' is reserved for high priority system address spaces (service class SYSTEM or
SYSSTC).

� X'FE' is reserved for future use.

� X'FD' is reserved for service class periods with importance = 1.

� X'FC' is reserved for service class periods with importance = 2.

� X'FB' is reserved for service class periods with importance = 3.

� X'FA' is reserved for service class periods with importance = 4.

� X'F9' is reserved for service class periods with importance = 5.

� X'F8' is reserved for service class periods with discretionary goals.

� The range of priorities between X'F9' and X'FD' is dynamically assigned to address
spaces and enclaves, as determined by the algorithms.

Each service class period maps to an I/O priority level. This mapping is dynamically
adjusted based upon how each service class period is meeting its goals and how the I/O
contributes to this success or failure. When IOS starts the I/O request and places the I/O
request on the UCB queue for the target device, the priority of the request is used to
place the request in priority sequence with respect to other pending requests for the
same device.

Sysplex I/O priority management
The goals of the sysplex I/O priority management support are:

� To separate I/O scheduling priority from CPU dispatching priority.

� To manage DASD I/O contention at the sysplex level.
Chapter 2. How WLM works 53

� To provide algorithms for assigning I/O priorities to the various workloads, based upon
information gathered through sampling techniques and data obtained from the IOS
component. It is a donor receiver function when the major delay is the I/O delay.

� To collect information and distribute the resulting I/O priority adjustments across systems
in a sysplex, using existing WLM cross-system communications (XCF) services.

� For each I/O request, IOS sets the request priority based upon a value established by
WLM for the requesting dispatchable unit.

The following changes have been introduced in the I/O process:

� IOS queues requests on the UCB queue by I/O priority.

� The I/O priority of an enclave or an address space is adjusted by WLM. Neither the
business transaction nor the WLM administrator has control over I/O priority.

I/O priority management decisions
To manage I/O priorities, information is needed about the delays of each DASD device. When
WLM wants to increase a service class period I/O priority, it does it with donor/receiver logic;
see “Donor and receiver determination” on page 43. Therefore, WLM must be able to
determine:

� If a service class period can significantly improve its goal achievement by raising its I/O
priority (a potential receiver).

� If lowering the I/O priority of a service class period (a potential donor) can improve the
achievement of the receiver.

WLM needs two types of information to make decisions on I/O priority management:

� Device usage information

The device usage time is the sum of device connect time and device disconnect time for
each I/O request, as measured by the I/O subsystem.

WLM can make decisions by comparing the level of device usage across the range of I/O
priorities, and projecting the amount of device usage that might occur if I/O priorities are
altered.

� Device delay information

WLM can make decisions by comparing the level of device contention across the range of
I/O priorities, and projecting the amount of contention that might occur if I/O priorities are
altered. The device delay time is the sum of the time that each request was delayed by
IOS (IOS queue time) and the time delayed in the I/O subsystem (pending time).

Channel subsystem I/O priority queuing (CSS IOPQ)
This is a part of the IRD feature available on System z machines in z/Architecture mode.

CSS IOPQ is an extension of I/O priority queuing by allowing I/O prioritization within an LPAR
cluster through a Service Assist Processor (SAP).

Table 2-3 on page 55 shows the priority settings.

Note: Channel measurement data gives the device connect and disconnect time and the
device pending time (including channel busy, controller busy, shared device busy). The
IOSQ time is a sampled value. The disconnect time is not taken into account when
calculating VELOCITY.
54 System Programmer’s Guide to: Workload Manager

Table 2-3 Priority settings by type of work

You can read more information about the IRD CSS IOPQ algorithm and setup in 3.5,
“Intelligent Resource Director” on page 103, or see the IBM Redbook, z/OS Intelligent
Resource Director, SG24-5952.

Dynamic Channel Path Management (DCM)
This is a part of the IRD feature available on System z servers in z/Architecture mode. DCM
applies only to DASD subsystems at this time.

DCM can be implemented to reduce the amount of channel and switch contention. It
introduces a new term called I/O velocity. I/O velocity is calculated for each logical control
unit (LCU) by dividing the amount of time that the LCU is used productively by this amount of
time plus an approximation of the amount of time that the LCU is delayed by channel busy
and Switch port busy. Example 2-5 shows how I/O velocity is calculated.

Example 2-5 I/O velocity calculation

 Connect Time
I/O Velocity = --
 Connect Time + Pend Time - (CU busy + Device busy)

For planning and using DCM, see the IBM Redbook, z/OS Intelligent Resource Director,
SG24-5952.

Parallel Access Volumes (PAV)
Parallel Access Volume allows the same z/OS to execute multiple I/O operations concurrently
against the same 3390 volume.

There are two ways to implement PAV devices in your installation: Static and dynamic alias
management, depending on the assignment process.

PAV devices
Your installation can manage PAV devices either in static or dynamic mode. If static PAV is
used, there is no change in device alias assignment unless an alias is deleted or added using
ESS Specialist.

In this section, we provide more details about the current implementation of the WLM
algorithms for dynamic alias management with IBM Enterprise Storage Server® (ESS). WLM
can be used to dynamically manage the assignment of alias devices to base devices and thus
ensure that the concurrency in I/O processing provided by PAV is available where it is most
needed.

ESS supports up to 16 logical subsystems (LSSs) for System z; the combined number of
alias and base devices in each LSS is limited to 256. The pool of alias devices for an LSS is
managed by WLM. Because aliases can be viewed as resources within ESS shared by

Priority Type of work

FF System work

FE Importance 1 and 2 missing goals

FD Importance 1 and 2 missing goals

F9-FC Meeting goals - adjusted by ratio of connect time to elapsed time

F8 Discretionary
Chapter 2. How WLM works 55

multiple systems, the WLM management of aliases is at a sysplex level. The WLM policy
specified by the administrator determines whether dynamic management of aliases for a
z/OS sysplex is to be activated. With WLM managing aliases, your installation does not need
to determine how many aliases to assign to each base device and does not need to manually
change this assignment when workloads change. WLM performs these tasks automatically.
WLM uses two mechanisms to manage the number of aliases. Both of these mechanisms
use sysplex-level device activity information to drive the decision to transfer an alias from one
device to another.

The first mechanism, based on the goal algorithm, attempts to allocate additional aliases to a
base device (the receiver device) that is experiencing IOS queuing delay and is servicing a
workload that is missing its client-specified goal in the WLM policy. A donor device is found
among the devices used by workloads that have equal or less business importance than the
receiver device. If such a donor device is found, then an alias can be transferred from it to the
receiver even if it means increased IOS queuing for the donor. However, if the donor device is
used by a workload of equal importance to the receiver, the donor device must not suffer
increased queuing as a result of losing the alias. These restrictions simplify the algorithm,
because then WLM does not need to predict how much an alias transfer will help or hurt the
attainment of business goals. An alias transfer requested by the goal algorithm does not
necessarily decrease overall IOS queue delay. It does help a higher importance workload do
better, but it could be at the expense of a lower importance workload, which is consistent with
the philosophy for other WLM-managed resources.

The second mechanism, based on the efficiency algorithm, transfers alias devices from low
contention base devices to high contention base devices without regard to the business
importance of the workloads involved. The objective is to minimize the total IOS queuing
within an LSS. This algorithm transfers an alias only when the goal algorithm did not result in
an alias being transferred, for reasons having to do either with the receiver or with the donor
device.

The goal algorithm is invoked more frequently than the efficiency algorithm. This gives the
attainment of business goals precedence over simply reducing total IOS queuing. High
contention base devices are those that have significant IOS queue delay. Low contention
base devices are those that have no significant IOS queue delay and can give up an alias with
no increase in queue delay. The efficiency algorithm is conservative, because it does not
make a transfer that can potentially cause more harm to the donor than benefit to the
receiver. The WLMs in the sysplex act as peers with respect to the efficiency algorithm: Any
of them can use the sysplex-level PAV device data to initiate alias transfers regardless of who
is using the devices.

Sysplex view of device activity
Because moving an alias from one base device to another affects every system using those
devices, the algorithm making that determination should have a sysplex view of the logical
volume, including the appropriate performance data. To build a sysplex view, each z/OS
system in the sysplex broadcasts its local performance data to all other z/OS systems. A peer
approach is used by WLM for managing aliases under the efficiency algorithm.

Any system in the sysplex is able to make alias transfer decisions based on the sysplex view.
The goal algorithm is locally oriented because each system tracks the PAV devices that are
causing the most IOS queue delay for each service class on the local system. Both the goal
algorithm and the efficiency algorithm are invoked periodically, although with a different
period.

Efficiency algorithm
Although the goal algorithm is invoked before the efficiency algorithm, we discuss the
efficiency algorithm first in order to introduce some new concepts that are more easily
56 System Programmer’s Guide to: Workload Manager

described in this context. The WLM efficiency algorithm takes aliases from base devices with
low contention and transfers them to base devices with higher contention; the contention is
measured by the IOS queuing delay. The result is to minimize overall IOS queuing against an
LSS. In a sysplex, invocations of the algorithm are scheduled at least 60 seconds apart. Note
that this algorithm is invoked less frequently than the goal algorithm, for which the period is
about 30 seconds.

A table listing all base volumes, as well as the unbound aliases, in an LSS, sorted by IOS
queue length, is used to find the most “needy” receiver devices as well as the “richest” donor
devices (unbound aliases are treated as having zero queue length). When a receiver-donor
pair is identified, IOS is instructed to unbind the alias from the donor device and bind it to the
receiver device. The efficiency algorithm can transfer multiple aliases in one pass but does
not transfer more than one alias to or from a particular base device more often than once per
cycle. See Figure 2-6 on page 58 and Table 2-4 on page 58.

Searching for a receiver-donor pair
WLM creates a table listing all base devices in an LSS. The table is sorted in descending
order by sysplex IOS queue length. For ties on IOS queue length, the table entries are in
ascending order with respect to the number of aliases assigned to the base device. Devices
at the top, at the high-IOS-queue-length end of the table, are potential receivers of aliases. A
device must have a sysplex IOS queue length above a threshold of 0.5 to be considered as a
receiver; for example, an average queue length of 0.5 is calculated when an IOS device
queue is sampled 40 times and when, on 20 of those samples, there was one request
queued. The value of 0.5 was empirically chosen after experimentation. If no receiver device
is found on the first pass, that is, if there are no devices with an IOS queue length greater than
0.5, a second pass is made in which receiver devices with lower levels of queuing are
considered.

Devices at the bottom, at the low IOS queue length end of the table, are potential donors.
Unbound aliases are placed at the very end of the low-IOS-queue-length end of the table.
Unbound aliases are the first choice as donors because they represent unused resources,
possibly unbound from base devices now offline and therefore idle. The efficiency algorithm
attempts to transfer one alias from a donor to a receiver, but only if taking the alias from the
donor is not expected to cause a significant increase in queue delay for the donor device.
Chapter 2. How WLM works 57

Figure 2-6 WLM PAV data table for a sysplex

Table 2-4 Alias donor effectiveness

Figure 2-6 shows the WLM PAV data table, which is the sorted table used for searching for
receiver-donor pairs. The efficiency algorithm takes an alias from a donor device only if the
action will not result in a significant increase in IOS queuing for the device. The more aliases
that the device has, then the higher its utilization can be and still remain an acceptable donor.
Table 2-4 shows an example of how the decision is made about the suitability of a donor.

According to this table, when a potential donor is taken down to one alias, its utilization must
be below 20%. When the potential donor is taken down to two aliases, the current utilization
must be below 35%. The table was generated from a multiserver queuing model used to
estimate the impact on device queuing based on the number of aliases and the average
utilization per alias. The utilization figures in the table were selected to ensure minimal impact
on the performance of the donor device. Here, the definition of minimal impact on queuing is
the point at which the probability of an I/O request encountering the base and all aliases in
use is less than 20%. Thus, if the projected impact of removing an alias keeps the device
below the utilization that would cause a 20% chance of queuing, then the alias can be
transferred.

Goal algorithm
In many cases, the efficiency algorithm is sufficient to optimize alias placement in a logical
subsystem and minimize overall IOS queue delay. However, there is one obvious case that
the efficiency mechanism cannot handle. This is the situation in which an alias needs to be
taken from a high activity device that is used only by work of lower importance and given to a

Number of remaining aliases Acceptable utilization

1 20%

2 35%

3 47%

DEVICE ENTRY

DEVICE ENTRY

...

DEVICE ENTRY

DEVICE ENTRY

S
Y

S
P

L
E

X
 IO

S
 Q

U
E

U
E

 L
E

N
G

T
H

N
U

M
B

E
R

 O
F

 A
L

IA
S

E
S

RECEIVER
DEVICE

DONOR
DEVICE

MOVE
ALIASES

58 System Programmer’s Guide to: Workload Manager

high activity device that is delaying work of high importance. For example, suppose there is a
transaction processing workload of high importance delayed by IOS queuing on a device, and
there is a second device in the same logical subsystem that has multiple aliases and is used
only by a batch workload of lower importance. Then, aliases should be taken from the second
device and transferred to the first in order to decrease the queuing delays for the first device,
even at the expense of increased queuing delays for the second device. The goal algorithm is
designed to handle such cases. Moreover, the goal algorithm runs before the efficiency
algorithm in order to ensure that when the number of donor devices is limited, goal-attainment
alias transfers take precedence over efficiency transfers. Because the service-class-delay
information used by the goal algorithm is only available to the local system, it is the local
system that makes the alias transfer decision in order to help a local service class that is
missing its goals.

The goal algorithm runs every 30 seconds on each system in the sysplex. Because the goal
algorithm runs more frequently than the efficiency algorithm, it can be more responsive to
situations where work of high importance is missing its goal. Specifically, the algorithm looks
for a service class missing its goal and also experiencing a significant amount of IOS queue
delay on the local system. For each such service class, an attempt is made to find additional
aliases for up to three devices among those contributing the most to the delay of the service
class on the local system. For each one of these three devices, the algorithm attempts to find
a donor device.

Although the search for a donor is performed in the same order used in the efficiency
algorithm, only devices used by service classes of the same or lower importance can qualify
as donors. The device-to-service-class mapping is used to make this determination. If the
donor device is used by less important service classes than the receiver, the transfer is made
even if IOS queuing will increase on the donor device. If the donor is used by work of equal
importance, a more conservative approach, similar to that used in the efficiency algorithm, is
used. The alias transfer is made only if there will be no increase in IOS queuing on the donor.

Pacing of alias transfers
Alias transfers are paced in order to prevent overreaction to transient fluctuations in I/O
workload. Any particular base device gets no more than one alias action, either added or
removed, per minute. The exception is when an alias is needed by the goal algorithm to help
a more important service class than the last service class helped in the subsystem. In this
case, the minimum time between alias transfers is lowered to 30 seconds. This allows a more
important workload to get first chance at taking aliases from devices that have had a recent
alias transfer. If the pacing interval were one minute in all cases, the efficiency algorithm on
one system in the sysplex could always be the first to run after the minute had expired; it
could transfer several aliases from a donor base device and delay the goal algorithm on
another system from helping work that is missing its goal.

Limiting the number of aliases
There is no prescribed maximum or minimum number of aliases that can be assigned to a
base. The adjustment algorithms heuristically determine the optimal number of aliases
needed to reduce or eliminate IOS queuing. WLM needs to recognize the point at which
adding more aliases will not improve I/O performance. Additional aliases do not help if the
IOS queuing is simply replaced by increased channel, control unit, or device contention. WLM
will not add aliases to a device if its average pending time, control unit queuing time, or
disconnect time is over a threshold. The current thresholds are 20 milliseconds for average
control unit queuing plus disconnect time and 20 milliseconds for average pending time.
(These threshold values were empirically derived based on experimentation.) The handling of
the pending time threshold is different from handling of the CU queuing/disconnect time
threshold. Average pending time for a PAV device is caused by a channel constraint local to a
system. In this case, aliases are still added to reduce IOS queuing for the system with low
Chapter 2. How WLM works 59

pending time even though the other system has high pending time and cannot benefit from
the additional alias. A pending device reservation is handled as a special case. WLM does
not take action against delays that are a result of pending device reserves on the volume
because adding an alias does not decrease this type of IOS queuing or pending time.

PAV management
There are two ways for the administrator to control dynamic alias management, either a
sysplex level option in specifying the WLM policy or a device level option in the z/OS
Hardware Configuration Definition (HCD). The sysplex level option in the WLM policy is a
YES/NO corresponding to whether dynamic alias management is active (for the entire
sysplex) or not. The default is NO, so that the administrator has a chance to prepare the
configuration and upgrade to the required software release levels before switching on the
dynamic alias management. The device level option in HCD enables or disables dynamic
alias management for a particular PAV base device. A device is enabled by default. The
device-level option in HCD is used to stop WLM from adjusting the number of aliases for a
device that is shared by systems that do not support dynamic alias management. Such
systems include systems from another sysplex or systems running an operating system other
than z/OS, such as VM. If an installation were to allow dynamic alias management for such
shared devices, the WLM alias transfer decisions would factor in only the device usage by the
systems that are participating in dynamic alias management. These decisions, based on a
partial view of device usage, are at risk of causing less than optimal alias allocation. The HCD
device-level option is also used to disable dynamic alias management for base devices that
are offline to some systems in the sysplex. If a device is online to some systems in the
sysplex but offline to others, WLM does not make valid alias transfer decisions.

PAV dynamic alias management for paging devices
Your system availability might be impacted when certain events, such as an SVC dump,
cause a burst of paging activity that locks out or slows down page fault resolution for your
critical workloads. New, combined ASM/WLM exploitation of parallel access volumes (PAVs)
on the IBM Enterprise Storage Server (ESS) allows the system to prevent page-outs from
blocking page-in operations.

Enhancements in z/OS V1R3 allow Auxiliary Storage Manager (ASM) to state the minimum
number of PAV dynamic aliases needed for a paging device. The more page data sets that
you have on the volume, then the more alias devices are set aside. A minimum number of
aliases is preserved by the system even in cases where aliases are moved to reflect changes
in workload. You do not need to define any of this; simply enable the volume for dynamic alias
management for your paging devices.

Details about PAV metrics
The measurements used to drive the PAV adjustment algorithms are accumulated across a
60-second interval on each system in the sysplex. Thirty-second measurements are used if
the goal algorithm needs to make an alias adjustment to help work of high importance before
the full minute has elapsed. The values maintained are:

Note: Like OFFLINE=YES/NO, WLMPAV=YES/NO is specified in the HCD Define Device
Parameters/Features panel and is specific to a system image. It is therefore possible to
have a different WLMPAV specification for the same alias device on different system
images. This is useful in situations where an installation has more than one sysplex with
shared access to a 2105 logical control unit (LCU).

Note: All systems in your sysplex must be on a z/OS V1R3 or above level in order for this
support to work.
60 System Programmer’s Guide to: Workload Manager

� Sysplex IOS queue length: IOS queuing on a base device is measured by WLM for
dynamic alias management because it is the indicator that the device has more
outstanding requests than its current number of aliases can handle concurrently. The
average IOS queue length for each base on a single system is calculated by sampling the
IOS queue every quarter second and averaging the queue length across the samples. The
sysplex IOS queue length for each base is the sum of the average queue lengths on each
system in the sysplex. The sum is used rather than an average across the systems to
ensure WLM properly handles the case where only one system out of many in a sysplex
has a nonzero queue length. Using a sum ensures appropriate action is taken for the
device to relieve the contention within that one system. Averaging the queue length across
the systems, especially in a large sysplex with many systems, can dilute the value so
much that WLM does not recognize that action is needed.

� Total service time: The device utilization over the measurement interval is calculated for
each system based on the total service time on the base device and all its current aliases.
The sysplex device utilization is calculated as the maximum utilization observed by any
system in the sysplex. This utilization is then used in a formula to determine if removing an
alias increases IOS queuing for a device. See “Assessing impact on a donor device” in the
section “Efficiency algorithm” on page 56 for more information.

� Average device delay time per request: This value includes control unit queue time and
disconnect time. It is compared against the threshold of 20 milliseconds. If the sum is
higher than the threshold, it indicates that the device cannot benefit from additional
aliases, and WLM stops transferring aliases to the device.

� Average pending time per request: This value represents channel contention. It is
compared against a threshold of 20 milliseconds. If this value is higher than the threshold
on the local system, it indicates the device cannot benefit from additional aliases.

� Device-to-service-class mapping: This is an array indicating which service classes are
using which PAV devices during the minute that is measured. Each service class is
assigned an importance level in WLM policy. The goal algorithm determines the most
important service class using a device and ensures that a donor device has a lower
importance than or equal importance to the receiver device. Certain special I/Os are
ignored for the purposes of creating this mapping so that the mapping represents only
application-level I/O activity.

The automatic management of alias devices by WLM makes the most efficient use of this
valuable resource in ESS under changing workload conditions. Letting WLM manage aliases
saves the installation staff from having to continually make manual alias adjustments in order
to match resources to work requirements. Because WLM takes into account the business
priority of the work in the z/OS sysplex, it can make alias adjustments to ensure that
business-critical work gets the resources that it needs to meet its goals, and that overall IOS
queuing is minimized.

2.4 Transactions and management
This section describes how WLM handles and manages different units of work.

2.4.1 How WLM treats work in the system
What we can see from Figure 2-7 on page 63 is that a client work request spans across
multiple address spaces on z/OS. In order to manage these requests, you must recognize the
transaction flow and, based on this, manage the address spaces and requests to meet the
user’s expectation. WLM developed a set of programming interfaces that allows middleware
and subsystems to identify work requests to WLM in order to help WLM to trace the work
Chapter 2. How WLM works 61

through the system and to identify the time the requests stay on z/OS. Over time, WLM
develops various techniques to recognize work on the system and to manage it
independently from or together with the address space where the programs run to process
them:

� The most basic variant is the address space. The start of an address space is known to
WLM, and if no more information is available about the work in the address space, WLM
can manage it based on its resource consumption and demand. Address spaces are
started and classified as started tasks, and the only goals that are applicable for them are
execution velocity goals or discretionary work.

� Batch work reuses already started address spaces. These are called initiators, and they
select work from the Job Entry Subsystems (JES). The beginning and end of each new
batch job is signaled through a system interface to WLM. This allows WLM to recognize its
duration, to provide classification rules for them, and to manage the initiators based on the
currently active job. Batch work can be managed through execution velocity and response
time goals, as well as discretionary work. Furthermore, WLM is able to start the initiators
on demand based on the goals for the batch service classes and the batch jobs waiting on
the JES input queues.

� A similar technique is used for Advanced Program to Program Communication (APPC).
APPC also has initiators available in the system, which receive incoming work and the
initiators tell WLM when a new work request begins and ends.

� TSO uses a different technique. After a TSO user address space has been started, it waits
on input from the TSO user terminal. When the user presses Enter, a new TSO
transaction starts and its end is defined when the result is returned to the terminal. The
beginning and end of the TSO transaction is signaled to WLM so that it is able to
recognize the individual transactions and to manage the TSO address spaces based on
them. Unix System Services (OMVS) uses the same interface to inform WLM about the
beginning and the end of user requests.

� CICS and IMS regions register as work managers to WLM and create control information,
the performance blocks, for all work that can be executed in parallel in the region. When a
work request enters the terminal-owning region (TOR) or IMS Control Region, it is
classified and associated with a performance block. State conditions are recorded in the
performance block during execution, and when the request is passed from a TOR to an
application-owning region (AOR), the continuation is maintained and information is
provided to WLM to understand the relationship.
62 System Programmer’s Guide to: Workload Manager

Figure 2-7 Online workloads

WLM continuously collects data from the performance block and captures the beginning and
end of all work requests to understand which region processes which type of work. The type
of work request is specified through work classification, which associates the work request
with a service class. WLM creates a picture of the topology, including the server address
spaces and the service classes of the work requests. It uses this topology to manage the
server address spaces based on the goal achievement of the service classes for the work
requests.

The picture on the left of Figure 2-7 depicts this topology. In the example, there are three
external service classes for CICS or IMS work and four registered server regions that process
the requests. One region processes only requests for service class Online High (red circles).
As a result, one internal service class (ISC) is created, which is used to manage this region.
Two regions process transactions depicted as red circles and turquoise rectangles. The
second internal service class is used for these two server regions, and the last region is
associated with the third internal service class.

Let us assume the external service class Online High misses its goals. Through the topology,
WLM finds out that three server regions process work requests of this service class, which
are associated with two internal service classes. Then, it calculates how much each of the
internal service classes contributes to the goal achievement of the external service class. Let
us assume WLM found out that the server regions of the internal class 2 need help. WLM will
help the server regions of this service class in order to improve the goal achievement of the
external service class Online High.

When we examine this example, we can see that in this case the transactions for Online Med
running in the server regions for class Internal 2 also receive help even if they might not need
it. This is a side effect of this type of transaction management. The benefit is that the
installation can use response time goals for the work requests processed by CICS and IMS.
Chapter 2. How WLM works 63

The example in Figure 2-7 on page 63 also demonstrates that too much granularity in
defining service classes might not be helpful.

We have described here the monitoring environment that is available for CICS and IMS.

2.4.2 Enclave management
This section describes the WLM management of enclaves. We see the classification, enclave
server, CPU and I/O management, storage management, and reporting aspect of this
management.

Classification
For classification:

� All independent enclaves have to be classified (dependent enclaves inherit owning
address space’s service class).

� The work manager subsystem type determines which rules are searched.

� Failure to classify results in service class SYSOTHER (with a goal of discretionary).

� Any goal type is allowed, but not all make sense under certain conditions.

� Enclave transactions are subject to period switch.

Application Environment enclave server
Enclave servers are DDF, CB, IWEB, and NETV:

� The enclave server address space is managed toward the goal of the enclaves.

� This address space runs in Dynamic Internal service class Period (DISP):

– The name has the format $SRMSnnn.

– The DISP assignment is based on events such as Join/Leave.

– DISP represents a group of address spaces serving the same set of external service
classes.

� Assumption:

– No significant CPU service is consumed outside of an enclave.

– Such CPU service is not taken into account when workload management assesses the
impact of CPU adjustment of enclave work.

Application Environment enclave server topology
Figure 2-8 on page 65 shows a server topology and the DISP:

� Topology is related to the number of enclave servers and their relation to external service.

� An Enclave server can serve:

– A single period service class
– A multi-period service class
– Multiple service classes
64 System Programmer’s Guide to: Workload Manager

Figure 2-8 Enclave server topology

Enclave exploiters
Enclave exploiters are:

� DB2 Universal Database™ for OS/390 and z/OS (DB2) - Dependent when client
� Distributed Data Facility (DDF) - Independent
� WebSphere HTTP Server for OS/390 (IWEB) - Independent
� LAN Server for MVS (LSFM) - Independent
� WebSphere (CB) - Independent
� MQSeries® Workflow (MQ) - Independent
� NetView® (NETV) - Independent
� Oracle® 9i (OSDI) - Independent
� SAP R/3® (SAP) - Independent

2.4.3 Execution delay monitoring
From the execution delay monitoring services, WLM knows how well work is executing, and
where any delays are occurring. The execution delay monitoring services are for complex
work manager configurations that process on a single system or across systems in a sysplex,
but do not allow MVS to individually manage resource consumption of the transactions.

The services allow MVS to recognize additional address spaces that are processing
transactions.

At address space initialization, the work manager address space issues the connect
service to establish authorization for subsequent services. It then issues the create
service to establish a monitoring environment that keeps track of the execution delays
encountered by a work request.

Note: The more complex the topology, the less sophisticated storage management you
can perform.

A S 3

A S 4

S C B

S C C

A S 1

A S 2

S C A

E x te r n a l
S e r v ic e C la s s

$ S R M S 0 0 1

$ S R M S 0 0 1

$ S R M S 0 0 2

$ S R M S 0 0 3

D y n a m ic In te r n a l
S e r v ic e C la s s

P e r io d
(S M F 9 9)

s in g le p e r io d

m u lt i- p e r io d
Chapter 2. How WLM works 65

When the execution delay monitoring services are used, z/OS can allocate resources for
address spaces based on the behavior of the transactions that are serviced by them. The
services also provide detailed execution delay information, so that you can determine
where work is delayed. You can then adjust the work manager configuration to more
consistently meet the goals.

The subsystem work manager uses the execution delay monitoring services to tell
workload management about the subsystem work manager’s view of the current state of
a work request, such as ready state, idle state, or waiting state. The actual state might be
different. For example, a work request can be active from the subsystem’s view, but might
be delayed by a page fault or for CPU access. The information is kept in performance
blocks, also called monitoring environments.

The monitoring environments represent work wherever it executes: across multiple
dispatchable units, address spaces, and systems.

Monitoring environment or performance block (PB)
In a monitoring environment or performance block:

� A PB is associated with a transaction, not a service class.

� It is created once by a work manager for each task that it owns.

� It contains transaction start time and transaction state data.

� PBs are sampled periodically by WLM as follows:

– Every 10th second in regions managed toward region goal
– Every quarter second in regions managed toward transaction goal
– To find out the server topology
– To collect subsystem work manager delays for reporting only

Figure 2-9 Performance block sampling

Services
Figure 2-10 on page 67 depicts the flow of execution delay monitoring services.

Note: Only response time goals can be used with execution delay services. If a
subsystem needs to use velocity goals, discretionary goals, or period switch, it has to
use enclave services instead.

Management Data State Data Classification Data

Arrival Time
Execution Time

Waiting for I/O
Waiting for Lock
66 System Programmer’s Guide to: Workload Manager

Figure 2-10 Execution delay monitoring services

Where:

� 1 Work Managers (servers) create a PB for each task.

� 2 The transaction arrives at the router (server A) and then:

– Obtains service class
– Initializes the monitoring environment (PB)

� 3 The transaction states are recorded in the PB as it flows.

� 4 Server A passes the transaction to the execution address space (server B) and the
switch is recorded in the PB of the task in server A.

� 5 PB is initialized, and transaction states are recorded.

� 7 Server C relates the PB (dependent) of the receiving task to the PB (parent) of the
sending task in server B.

� 8 The transaction continues while the states are recorded until the transaction
completes.

� 9 Server B receives the result and notifies the end of the execution to WLM.

� 10 Server A receives control back from server B and reports the end of the transaction
to WLM.

� 11 The results are sent to the originator.

Server topology
Server topology is an algorithm used to track, in a multiple address space subsystem
work manager, the distribution of the transactions, and their service classes across these
multiple address spaces. The priorities and resource management of these address

Server A Server B Server C

PBPB
switch relate

1 1 1

3 8

NotifyReport11 10

3

1 1

PBPB

8

1

PBPB7

5

9

end-to-end phase

execution phase

22 4 6
Chapter 2. How WLM works 67

spaces are decided by this distribution of the transactions and the goals of the
transactions. Server topology relies on the information passed by the subsystem work
manager through the use of WLM services interfaces.

The server topology is only implemented for CICS and IMS transaction response time
goals. Other subsystems use enclave transactions instead.

A positive aspect of server topology is that it is completely installation-transparent, that is,
you do not need to tell WLM in which address spaces your CICS or IMS transaction runs.
The locality of the transaction is communicated to WLM by the subsystems.

The CICS and IMS address spaces (regions) are called server address spaces.

When any address spaces start, WLM views them as nonservers. Later, an address space is
recognized as a server if it uses certain WLM services, such as:

� Either a report (IWMRPT) or notify (IWMMNTFY) for a transaction.

� Services associated with the use of a performance block (PB) that represents a
transaction. The association was done via execution delay monitoring services.

When does an address space becomes a server
An address space becomes a server when:

� A PB exists that represents a transaction. This is done via WLM execution monitoring
services.

� The address space notifies WLM about the end of transaction execution or reports the
transaction completion to WLM.

Dynamic Internal Service Class Period (DISP)
For each set of servers found serving the same set of external service classes, an internal
service class period (DISP) is created and assigned to them.

They are dynamically created based on sampling and called $SRMnnn. They are not visible
externally (except for SMF99 trace data).

The number of DISPs depends on the number of external service classes and the
combination of server address spaces.

Address spaces must belong to the same Resource Group (if any).

DISPs are rebuilt potentially once per minute.

Figure 2-11 on page 69 shows an example of three external service classes and three DISPs
associated with this particular server topology.
68 System Programmer’s Guide to: Workload Manager

Figure 2-11 Dynamic Internal service class (DISP)

In order to evaluate the server topology, WLM must first understand which external
service classes are served by each server. This is accomplished by WLM maintaining a
served class history for each server address space.

Clients define service classes for transactions to be processed by server address spaces.
These service classes are referred to as external service classes (ESCs), and they have
real client-defined goals. WLM groups some server address spaces into internal service
classes. Some internal service classes are called dynamic when they are associated with
server address spaces (such as CICS) serving the transactions with the external service
classes. These dynamic internal service classes are used to manage to the goals of the
external service classes. For example, assume that the WLM wants to help a given
service class representing some CICS transactions. WLM must know which address
spaces must be given more resources because the CICS transactions in that service
class run in multiple address spaces. A DISP is the set of address spaces that serve a
given set of ESCs, and it is the set of address spaces in the DISP that will be given the
resources.

Server topology is the function used to create the DISP and map it to the external service
classes representing transactions with goals.

Server topology determination
The following is an example of the methodology that is used to determine the server topology.

Imagine that address space server B was found servicing service classes CRIT, DBTRX,
and ATM. Address space server A was found servicing service class CRIT. Address

Server A Server B Server C

External Service Classes

Dynamic Internal Service Classes Periods

Service Class
STC

Original service class for STCs

$SRMS002 $SRMS003

Service Class
CRIT

Imp1; 0.5s Avg

Service Class
DBTRX

Imp2; 70% < 3s

Service Class
ATM

Imp2; 90%<1s

$SRMS001
Chapter 2. How WLM works 69

space server C is serving service classes ATM. The following list shows which server is
serving what:

Server A {CRIT}

Server B {CRIT, DBTRX, ATM}

Server C {ATM}

Server D {CRIT}

To find the minimum number of dynamic internal service classes, it must be determined
for each server address space set all other server address space sets that are equal (that
is, those address spaces that serve the same set of external service classes, and that
belong to the same Resource Group). For this example, this exercise would result in the
following dynamic internal service classes getting built:

� DISP $SRMS001 - Server A+D
� DISP $SRMS002 - Server B
� DISP $SRMS002 - Server C

The topology is reassessed and the DISPs potentially rebuilt once per minute, based on a
full PB sampling for topology or on the topology deduced from report and notify calls.

The dynamic internal service classes are used as accumulators of data (delay counters,
for example) for managing servers. Because the same address space can be serving
multiple external service classes, the counts are used to determine a weighting factor of
not only which server is serving what, but also how much. This is important to know,
because if your transaction does not reach its goal, WLM has to decide what the major
delay for this transaction is and which address spaces get more resources.

Refer to Figure 2-11 on page 69 for an example of a server topology. There is an ESC for
each service class representing the CICS transactions. If WLM wants to help the ESC for
CICS transaction Type DBTRX in this figure, then the only address space that can be
helped is the DISP representing server B. But, if WLM wanted to help CICS transaction
Type CRIT, then the weighting factors would be used to determine whether to help the
server A address space (DISP $SRMS001) or server B address space (DISP
$SRMS002).

Server requiring help determination
In order to determine which server to help, WLM calculates a “weight” for all servers
potentially targeted for this help.

The weight is calculated according to the different delays that the servers are experiencing.
The server with the biggest weight will be helped.

Let us evaluate this example based on Figure 2-11 on page 69.

Figure 2-12 on page 71 shows the ESC and the number of transactions per server:

� CRIT is missing its goal.

� CRIT is served by A and B.

� Based on PB-sampling:

– A's share is about 30% computed as 100 / (250+100).
– B's share is about 70%.
70 System Programmer’s Guide to: Workload Manager

� WLM examines delays in $SRMS001 and $SRMS002 and might come to the conclusion
that $SRMS002 needs help.

� Transactions in DBTRX and ATM will benefit from additional resources assigned to B.

Figure 2-12 DISP scenario

Server management
WLM uses samples within the internal service class periods to determine how well work is
progressing.

The servers are managed based on the PI of the transaction service classes served.

WLM sets dispatch priority and access to other resources for the server:

� WLM is unaware of the single transactions.
� WLM does not assign computing resources to transactions.

The external service class of a server is ignored, unless:

� Management toward the region-goal was specified in the classification rules for the server.

� The server is not serving any transaction (during start/stop or periods of longer inactivity).

� Dependent enclaves of type MONENV are used (DB2 Stored Procedures called by CICS).

Transaction phase
Figure 2-13 on page 72 shows transaction phases, for example, for a CICS transaction using
DB2.

Server A Server B Server C

SvcSvc Svc

ATM 300

#

Crit 100 Crit 250
DBTRX 100
ATM 50
Chapter 2. How WLM works 71

Figure 2-13 Transaction phases for a CICS transaction

The Begin to End (BTE) phase starts when a transaction starts in a terminal-owning region
(TOR) and ends when the TOR receives it back from an application-owning region (AOR),
finishing off. Its associated PB bits show TOR states along transaction execution.

BTE phase duration is roughly response time minus TOR queue time.

The EXEC phase PB has details about the different steps of the transaction out of the TOR.
There are two types of EXEC phase:

� EXEC1, when the transaction is in the execution AS (AOR or IMS/MPR). It is roughly the
AOR/MPR transaction service time. It is not contiguous; it is interrupted when the
database AS is executed. Along AOR execution, there are two active and sampled PBs:
the BTE (with the delay-for-conversation bit on) and the EXEC1 phase describing the
states of the AOR execution.

� EXEC2, when the execution is done by the supporting database AS, such as DB2 or DL1.
It is contiguous in time. Along with database execution are two active PBs: the BTE with
(the delay-for-conversation bit on), and the EXEC2 phase describing the states of the
database execution.

Example 2-6 on page 73 shows an example on a RMF report of a CICS transaction using
DB2 and DBCTL (IMS) database managers.

CICS TOR CICS AOR DB MgrVTAM

MVS System Resources

Response time

BTE - Begin to End Time

EXE - Execution Time (CICS)

EXE - Execution Time (DB)

NOTIFY

REPORT

72 System Programmer’s Guide to: Workload Manager

Example 2-6 RMF Reporting on CICS DB2 IMS

REPORT BY: POLICY=ITSOPOL1 WORKLOAD=ONLPRD SERVICE CLASS=ONLPRD RESOURCE GROUP=*NONE PERIOD=1 IMPORTANCE=2
 CRITICAL =NONE

 TRANSACTIONS TRANS.-TIME HHH.MM.SS.TTT
 AVG 0.00 ACTUAL 90
 MPL 0.00 EXECUTION 89
 ENDED 101250 QUEUED 0
 END/S 56.25 R/S AFFINITY 0
 £SWAPS 0 INELIGIBLE 0
 EXCTD 1110 CONVERSION 0
 AVG ENC 0.00 STD DEV 808
 REM ENC 0.00
 MS ENC 0.00

 RESP -------------------------------- STATE SAMPLES BREAKDOWN (%) ------------------------------- ------STATE------
 SUB P TIME --ACTIVE-- READY IDLE -----------------------------WAITING FOR----------------------------- SWITCHED SAMPL(%)
 TYPE (%) SUB APPL MISC PROD LOCK CONV I/O LTCH LOCAL SYSPL REMOT
 CICS BTE 55.3 16.4 0.0 19.3 3.1 1.3 37.9 11.7 7.9 2.3 0.0 8.0 0.0 0.0
 CICS EXE 1.1 20.5 0.0 17.3 0.5 0.7 52.0 0.0 3.9 5.1 0.0 980 0.0 0.0
 DB2 BTE 10.4 36.5 0.0 0.0 0.0 61.9 0.0 0.2 0.0 0.7 0.6 0.0 0.0 0.0
 DB2 EXE 0.6 29.6 0.0 0.0 0.0 68.7 0.0 0.0 0.0 0.9 0.9 0.0 0.0 0.0
 IMS BTE 1.8 100 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
 IMS EXE 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ACTUAL RESPONSE TIME = 0.090 seconds = 100%

Summary
WLM provides the ability to classify transactional work at either the region or transaction
level.

WLM provides cross-subsystem management and reporting of transactions throughout
system and sysplex.

WLM knowledge of server topology and WLM goals allow dynamic on-going tuning.

RMF provides an enhanced reporting of work manager delays.

Note: The frequency of the RMF interval and the state and response time sampling can
potentially cause these situations. If a transaction starts at RMF interval 1 but ends at RMF
interval 2, the state sample is included in RMF interval 1 but the response time will not be
included. In RMF interval 2 (when the transaction ends), the response time will be included
but not the state sample. Never-ending tasks generate only state samples.

APAR OW52227 addresses this problem by showing the single states as percentages of
total state samples instead of response time. This eliminates percentages >100 in the
BREAKDOWN section. Thus, the RESPONSE TIME BREAKDOWN is replaced by a
STATE SAMPLE BREAKDOWN. Accordingly, the STATE SWITCHED TIME is replaced by
a STATE SWITCHED SAMPL(%) breakdown. Only the TOTAL column will be kept as
percentage of response time, which is the current view. However, the field name will be
changed to RESP TIME(%). Before this APAR, state samples were reported as a
percentage of response time. The response time is calculated when a transaction
completes. This could result in values >100% when samples for long-running transactions
were included that did not complete in the RMF interval.

For example, RMF has information covering 93.4% of the response time of a subsystem
BTE phase. Thus, the RESP TIME(%) field has a value of 93.4. Of the total, 89.2% state
samples are of type waiting_for_conversion. Thus, CONV is reported with 89.2. This value
accounts for 83.3% of the response time, because 100% of the total state samples
correspond 93.4% of the response time (89.2 x 93.4 / 100 = 83.3). Before OW52227,
CONV would have been reported with 83.3%.
Chapter 2. How WLM works 73

The limitations compared to enclaves are:

� Only single period service classes with response time goals are allowed for transactions.

� No MVS resource accounting for transactions. Work manager specific means are
required.

� All management is on a server basis.

Resource adjustments for the server affect all transactions (in all service classes)
executing in it.
74 System Programmer’s Guide to: Workload Manager

Chapter 3. WLM functions

This chapter describes the following Workload Manager (WLM) functions:

� Protecting the work
� Management of server address spaces
� Sysplex routing
� Intelligent Resource Director
� Management of specialty processors

3

© Copyright IBM Corp. 2005, 2006, 2007. All rights reserved. 75

3.1 Protecting work
WLM offers several features to protect specific work from being hurt by other work’s behavior.
These features apply to resources such as CPU, storage, and initiator controls.

3.1.1 Resource Groups
Resource Groups can be used to define a minimum and maximum amount of CPU service for
particular work. Work is assigned to a Resource Group by specifying the Resource Group in
the service class definition. A Resource Group can include multiple service classes, but a
service class can only be assigned to one Resource Group.

The maximum capacity of a Resource Group is enforced. WLM takes various actions to stop
work in a Resource Group from exceeding the capacity, including swapping, changing
dispatching priorities, and capping the CPU consumption.

The minimum capacity is only used when work in the Resource Group is not meeting its
goals. If work in a Resource Group is not meeting its goals, WLM will attempt to provide the
minimum service defined in the Resource Group, even if that causes more important work to
miss its goals.

Normally, you should avoid using Resource Groups. Try to set appropriate goals and allow
WLM to manage the resources. Resource Groups restrict the ability of WLM to make
changes to meet the goals you have defined. However, they are necessary in some
circumstances. Your workload might have some characteristics that mean that normal WLM
management does not work well. In that case, Resource Groups can be useful to ensure that
work receives the service that it needs.

Types of Resource Groups
There are three types of Resource Groups:

Type 1 Capacity is specified in unweighted CPU service units per second (SU/s). The
maximum and minimum limits have sysplex scope.

Type 2 Capacity is specified as a percentage of logical partition (LPAR) capacity from
0-99. The sum of all Resource Group minimums should not exceed 99. The
maximum and minimum limits have system scope.

Type 3 Capacity is specified as a percentage of a single general purpose CP. 100
represents the capacity of one CPU. The number can range from 0 to 999999,
but the sum of all Resource Group minimums should not exceed the number of
processors x 100. The maximum and minimum limits have system scope.

Resource Group types 2 and 3 were introduced in z/OS release 1.8. Prior to that, only
Resource Group type 1 was available.

Resource Group type 1 has sysplex scope; therefore, the limits will be applied based on the
service those workloads receive across the entire sysplex. There are no guarantees about
the amount of service that the workload achieves on a particular system. It is possible that a
service class might receive most or all of its capacity limit on one system, and very little
service on other systems.
76 System Programmer’s Guide to: Workload Manager

Resource Group types 2 and 3 have system scope, which means that WLM applies the limits
to each system independently. The amount of service consumed in the Resource Group on
one system does not influence the amount of service that can be provided on the other
systems in the sysplex.

Up to 32 Resource Groups can be defined in a service definition.

Defining Resource Groups
Resource Groups have a name and optionally a description.

Resource Group parameters are:

� Define capacity:

Type 1 In service units (sysplex scope)

Type 2 As a percentage of the LPAR share (system scope)

Type 3 As a number of CPs times 100 (system scope)

� Minimum capacity

Defines the minimum amount of service for service classes in this Resource Group.

Service classes, which are not meeting their goals in Resource Groups, that are
consuming less than their minimum get higher preference when new dispatch priorities
are calculated, even if that causes higher importance work to miss its goals.

� Maximum capacity

Defines the maximum amount of service that the service classes are allowed to use.

This can be accomplished by enforcing swapping, adjusting dispatch priorities, or
switching the work in the Resource Groups to non-dispatchable in order to reduce CPU
consumption.

Defining capacity in service units
Type 1 Resource Groups are defined in unweighted service units per second. The capacity
limits apply to CPU used in both TCB and service request block (SRB) mode.

Type 1 Resource Groups define service limits across the entire sysplex. They can control
how much service the workloads receive in total, but do not control how much service is
received on each system in the sysplex.

Service units are intended to be a processor independent measure of service, so SU/s values
required by a particular workload should remain reasonably consistent (but not necessarily
the same) across hardware changes. The equivalent CPU percentages will change. If you
want to keep the same percentage of the system across a hardware migration, you will need
to calculate new SU/s values.

The service units per second that can be delivered by a CPU can be found on the SRM site
at:

http://www.ibm.com/servers/eserver/zseries/srm/

The value to use depends on the number of CPUs in the LPAR, not the number in the central
electrical complex (CEC). The exact value varies in order to account for the multiprocessor
(MP) factor. This value is also reported on the Policy section of the RMF Workload Activity
Report.

Note: Minimum capacity is ignored when the work is meeting its goal.
Chapter 3. WLM functions 77

http://www.ibm.com/servers/eserver/zseries/srm/

Defining capacity as a percentage of the LPAR share
Type 2 Resource Groups are defined as a percentage of the LPAR share. The LPAR share is
normally the LPAR weight divided by the sum of all LPAR weights on the CEC. If the LPAR
capacity changes, for example, due to soft capping, the capacity of the Resource Group also
changes.

The value should be from 0-99, and the sum of all Resource Group minimums should not
exceed 99.

Type 2 Resource Group limits are applied per system. If one LPAR in the sysplex has twice
the capacity of another, its Resource Group service limits will also be double.

Type 2 Resource Groups will change capacity (measured in SU/s) with hardware changes,
but will be the same percentage of the system.

Defining capacity as a number of CPs times 100
Type 3 Resource Groups are defined as a number of CPs times 100. This is equivalent to a
percentage of a single CP. Values can be greater than 100 if the system has multiple CPUs.

The limits are applied per system. The Resource Group capacity in SU/s will change with
hardware changes.

Resource Group usage consideration
Type 1 Resource Groups are sysplex-wide and can contain multiple service classes.
Problems can occur when these service classes have different importances and when the
sysplex hardware is different (for example, 9672 and z990).

The minimum service consumption and maximum service consumption of type 1 Resource
Groups are sysplex-wide, but work in the service classes does not necessarily run equally on
all systems. In most cases, it does not, so it is possible that work in a Resource Group
consumes many CPU cycles on one system while it does not consume a lot on other
systems:

� WLM will always try to balance the service consumption but there is no guarantee to it.

� In the end, each system must decide on the service that it gives to the work in the
Resource Groups.

� For that reason, the systems exchange information about the demand and service
consumption of the work in Resource Groups on other systems.

� Given the combination of the goals, the importance level, and the Resource Group
capacity, some goals might not be achievable when capacity is restricted. The RMF
Workload Activity Report shows you the service class delay because of resource capping.

Resource Group maximum management
The purpose of the capping function is to control the amount of CPU service rate that
dispatchable units in a set of address spaces (or enclaves) in a Resource Group consume.
Policy adjustment code forces this objective by measuring the CPU service rate
consumed by the group (locally and in the sysplex). The CPU service rate values are
accumulated first on local systems and then across the sysplex for a total. The total value
of the consumed service rate is used to determine if it exceeds the Resource Group
maximum service rate. This comparison then determines how much to throttle address

Note: You cannot assign a Resource Group to service classes representing
transaction-oriented work, such as CICS or IMS transactions. The ISPF application notifies
you with an error message if you attempt to define one.
78 System Programmer’s Guide to: Workload Manager

spaces in the group. This throttling is done by limiting the dispatchability of the address
spaces or enclaves in the Resource Group.

Capping pattern
The capping pattern determines the number of slices when service is given to work and the
remaining slices when work is capped. There are 64 slices per second. These slices apply to
elapsed time.

The control is done at the Resource Group level and not at the service class level. All address
spaces or enclaves in all service classes in a Resource Group are controlled by the same
number of cap slices. Meanwhile, the dispatching priority assigned to each service class
period is still based on the goals. Therefore, work in the Resource Group with a more
stringent goal will more likely run when the group is not capped.

Dispatchable units from address spaces or enclaves belonging to a Resource Group are
made non-dispatchable during some time slices (cap slices) in order to reduce access to the
CPU to enforce the Resource Group maximum. The time slice where they are set as
dispatchable is an awake slice.

Because two groups can accumulate service units at different rates, each time slice for a
group is set in proportion with a previously measured average CPU service rate that the
Resource Group collects. Therefore, by knowing how much above the maximum a Resource
Group is, it is simple to derive the number of cap slices that the address spaces in the group
are going to get during every elapse of the 64 time slices.

Because the cap slices for different groups are evenly spread across the time slices and the
time slices are of relatively short duration, the changes in dispatchability do not appear as
abrupt service changes.

All address spaces or enclaves in a Resource Group on each system are made dispatchable
for the same proportion of time and during the same intervals. Address spaces in the same
group but on different systems can be made dispatchable for different proportions of time and
during different intervals. The proportion of time that address spaces are made dispatchable
on different systems is based on the importance and quantity of work in the group running on
each system.

Work on the system that has more of the group's higher importance work can be made
dispatchable for a larger proportion of time than lower importance work in the same group on
another system. The intent is to equalize performance indexes for service class periods of the
same importance within the Resource Group constraints across the sysplex.

Capping delay is treated as another form of processor delay when managing dispatching
priorities to meet goals. Consequently, service class periods within a capped Resource
Group can have their dispatch priorities increased to address capping delay as well as
processor delay.

Every 10 seconds (the policy adjustment interval time), all Resource Groups are reappraised
to determine if further adjustment is necessary. If so, the times that groups are to be set
dispatchable or non-dispatchable are reevaluated. The 64 time slices and the cap slices are
then reassigned.

Note: Discretionary goal management is a part of a Resource Group (a dynamic Resource
Group) that uses only the MAXIMUM function of Resource Group capability.
Chapter 3. WLM functions 79

Service ramps up
There can be a delay between the time service class starts working and the time Resource
Group capping is enforced.

This example shows this phenomenon:

� Environment studied:

– Single system z900-2C4 that can deliver 4 x 13082.58 = 52330.32 SU/s.

– Some system workload.

– Resource Group maximum set at 3000 SU/s.

– No work was running during the last minute.

� Work arrives to consumes up to 10000 SU/s:

– The workload consumes fewer SU/s in the beginning due to some I/O, paging, and
other environmental setup actions.

– When the workload starts, there is no historical data available, so the workload runs 10
seconds without any capping (the 10 seconds are the regular WLM policy adjustment
time). So, the capping cannot be done at the correct point (initial start of the workload).

– This “warm up” time can take several minutes before WLM caps with the right amount
of cap slices. Figure 3-1 shows graphically what is happening. During the swing-in,
service consumption can be as high as twice the maximum specified in the maximum
value of the Resource Group definition.

Figure 3-1 Resource Group service ramp up

Awake slice calculation
The capping is in effect only if the service class has consumed more than the maximum set in
the Resource Group definition.

An awake slice is a slice where the address space will be marked as dispatchable.

The awake slice count calculation is done every 10 seconds.

time

SU

Maximal
value

several minutes
80 System Programmer’s Guide to: Workload Manager

When a Resource Group caps one or more service classes, the service units consumption
(SU) and the amount of cap slices (CAP) in the last minute are used to forecast what will
happen for the next 10 seconds:

� CAPawakeSlice = SU / CAP
� SLICES = MAX value / CAPawakeSlice

Figure 3-2 shows the SU/s consumption during the last minute in ranges of 10 seconds and is
used in our calculation example.

Figure 3-2 Awake slice calculation

The MAX value contains SU/sec, so in 1 minute you can consume 60 * MAX value.

Suppose that you set a MAX value of 16000 SU/s in the Resource Group definition.

If in the last minute (as shown in Figure 3-2), you have consumed 990000 SU with 36 CAP,
the awake slice is 99000(SU/s) / 36(CAP) = 2750 SU/s.

The number of slices for the next 10 seconds is 16000(MAX SU/s) / 2750(SU/s per awake
slice) = 5.81 slices.

So SRM uses 5 slices in the next 10 seconds.

RMF reporting
Example 3-1 shows that service class BATPIER has a Resource Group RGPIER.

The capping accounts for 75.8% of the delay samples as reported in the CAPP field.

A TCB or SRB is marked non-dispatchable:

� Because a Resource Group maximum is being enforced.

� Or because of discretionary goal management. That is, if certain types of work are over
achieving their goals, that work might be capped so that the resources can be diverted to
run discretionary work.

Example 3-1 Resource Group capping in RMF report

REPORT BY: POLICY=WLMPOL WORKLOAD=BAT_WKL SERVICE CLASS=BATPIER RESOURCE GROUP=RGPIER PERIOD=1 IMPORTANCE=4
 CRITICAL =NONE

 TRANSACTIONS TRANS.-TIME HHH.MM.SS.TTT --DASD I/O-- ---SERVICE---- --SERVICE RATES-- PAGE-IN RATES ----STORAGE----
 AVG 8.41 ACTUAL 21.11.012 SSCHRT 81.1 IOC 24100 ABSRPTN 2059 SINGLE 0.0 AVG 3901.37
 MPL 8.41 EXECUTION 9.55.970 RESP 1.0 CPU 1056K TRX SERV 2059 BLOCK 0.0 TOTAL 32795.2
 ENDED 6 QUEUED 3.078 CONN 0.6 MSO 9287K TCB 48.3 SHARED 0.0 CENTRAL 32795.2
 END/S 0.01 R/S AFFINITY 0 DISC 0.0 SRB 18827 SRB 0.9 HSP 0.0 EXPAND 0.00
 #SWAPS 0 INELIGIBLE 11.11.962 Q+PEND 0.3 TOT 10386K RCT 0.0 HSP MISS 0.0
 EXCTD 0 CONVERSION 349 IOSQ 0.1 /SEC 17310 IIT 0.4 EXP SNGL 0.0 SHARED 0.00
 AVG ENC 0.00 STD DEV 0 HST 0.0 EXP BLK 0.0
 REM ENC 0.00 APPL % 8.3 EXP SHR 0.0
 MS ENC 0.00

Last minute Interval SU in 10 seconds SU/s Active slices

- 50 sec 150000 15000 6

- 40 sec 200000 20000 6

- 30 sec 200000 20000 5

- 20 sec 160000 16000 6

-10 sec 120000 12000 6

Now 160000 16000 7

Total needed for forecast 990000 99000 36
Chapter 3. WLM functions 81

 VELOCITY MIGRATION: I/O MGMT 2.1% INIT MGMT 2.1%

 ---RESPONSE TIME--- EX PERF AVG --USING%- ---------- EXECUTION DELAYS % --------- ---DLY%-- -CRYPTO%- ---CNT%-- %
 HH.MM.SS.TTT VEL INDX ADRSP CPU I/O TOT CAPP CPU I/O UNKN IDLE USG DLY USG DLY QUIE
 GOAL 30.0%
 ACTUALS
 SYS1 2.1% 14.3 2.8 1.0 1.0 91.1 75.8 14.8 0.4 6.9 0.0 0.0 0.0 0.0 0.0 0.0

Resource Group usage examples
Next we discuss examples of where your installation might benefit by using Resource
Groups.

Protection of low goal service class from capping
If you have a service class which is overachieving a low goal, it can be subject to WLM
capping to provide more service to discretionary work. To protect it from capping, and
according to the WLM rules defined in “Selecting a receiver candidate” on page 45, you can
assign a Resource Group without a minimum and maximum, and capping will not take place.

A low goal means:

� EXECUTION VELOCITY Goal is less than or equal to 30%.
� RESPONSE TIME Goal is longer than 1 minute.
� Any Importance level.

Example 3-2 shows service class BATPIER with a VELOCITY GOAL of 30%.

Example 3-2 Service class initial setting

REPORT BY: POLICY=WLMPOL WORKLOAD=BAT_WKL SERVICE CLASS=BATPIER RESOURCE GROUP=*NONE PERIOD=1 IMPORTANCE=3
 CRITICAL =NONE

 TRANSACTIONS TRANS.-TIME HHH.MM.SS.TTT --DASD I/O-- ---SERVICE---- --SERVICE RATES-- PAGE-IN RATES ----STORAGE----
 AVG 2.97 ACTUAL 1.45.029 SSCHRT 899.2 IOC 223323 ABSRPTN 58154 SINGLE 0.0 AVG 3966.86
 MPL 2.97 EXECUTION 1.44.561 RESP 0.9 CPU 8820K TRX SERV 58154 BLOCK 0.0 TOTAL 11780.8
 ENDED 12 QUEUED 468 CONN 0.6 MSO 77155K TCB 425.0 SHARED 0.0 CENTRAL 11780.8
 END/S 0.02 R/S AFFINITY 0 DISC 0.0 SRB 153458 SRB 7.4 HSP 0.0 EXPAND 0.00
 #SWAPS 0 INELIGIBLE 0 Q+PEND 0.3 TOT 86352K RCT 0.0 HSP MISS 0.0
 EXCTD 0 CONVERSION 262 IOSQ 0.0 /SEC 172707 IIT 3.1 EXP SNGL 0.0 SHARED 0.00
 AVG ENC 0.00 STD DEV 50.588 HST 0.0 EXP BLK 0.0
 REM ENC 0.00 APPL % 87.1 EXP SHR 0.0
 MS ENC 0.00

 VELOCITY MIGRATION: I/O MGMT 51.1% INIT MGMT 51.0%

 ---RESPONSE TIME--- EX PERF AVG --USING%- ---------- EXECUTION DELAYS % --------- ---DLY%-- -CRYPTO%- ---CNT%-- %
 HH.MM.SS.TTT VEL INDX ADRSP CPU I/O TOT CAPP CPU I/O UNKN IDLE USG DLY USG DLY QUIE
 GOAL 30.0%
 ACTUALS
 ITS1 51.1% 0.6 1.0 20.1 21.7 40.0 18.0 15.4 6.6 18.1 0.0 0.0 0.0 0.0 0.0 0.0

We see that service class BATPIER has 18% of capping delays due to its low VELOCITY
goal of 30%. We do not want that, and we add a Resource Group RGPIER to fix it. This is
shown in Example 3-3.

Example 3-3 Adding a Resource Group to a low goal service class

REPORT BY: POLICY=WLMPOL WORKLOAD=BAT_WKL SERVICE CLASS=BATPIER RESOURCE GROUP=RGPIER PERIOD=1 IMPORTANCE=3
 CRITICAL =NONE

 TRANSACTIONS TRANS.-TIME HHH.MM.SS.TTT --DASD I/O-- ---SERVICE---- --SERVICE RATES-- PAGE-IN RATES ----STORAGE----
 AVG 2.95 ACTUAL 1.32.499 SSCHRT 1109 IOC 267176 ABSRPTN 71780 SINGLE 0.0 AVG 3959.19
 MPL 2.95 EXECUTION 1.31.951 RESP 0.9 CPU 10507K TRX SERV 71780 BLOCK 0.0 TOTAL 11696.3
 ENDED 15 QUEUED 547 CONN 0.6 MSO 91877K TCB 506.3 SHARED 0.0 CENTRAL 11696.3
 END/S 0.03 R/S AFFINITY 0 DISC 0.0 SRB 189538 SRB 9.1 HSP 0.0 EXPAND 0.00
 #SWAPS 0 INELIGIBLE 0 Q+PEND 0.3 TOT 102840K RCT 0.0 HSP MISS 0.0
 EXCTD 0 CONVERSION 139 IOSQ 0.0 /SEC 212328 IIT 3.7 EXP SNGL 0.0 SHARED 0.00
 AVG ENC 0.00 STD DEV 28.890 HST 0.0 EXP BLK 0.0
 REM ENC 0.00 APPL % 107.0 EXP SHR 0.0
82 System Programmer’s Guide to: Workload Manager

 MS ENC 0.00

 VELOCITY MIGRATION: I/O MGMT 65.0% INIT MGMT 59.6%

 ---RESPONSE TIME--- EX PERF AVG --USING%- ---------- EXECUTION DELAYS % --------- ---DLY%-- -CRYPTO%- ---CNT%-- %
 HH.MM.SS.TTT VEL INDX ADRSP CPU I/O TOT CPU I/O UNKN IDLE USG DLY USG DLY QUIE
 GOAL 30.0%
 ACTUALS
 ITS1 65.0% 0.5 1.0 27.3 29.2 30.5 21.5 9.0 13.0 0.0 0.0 0.0 0.0 0.0 0.0

There is no more CAPP delay, and the service class will not be subject to being capped.

Smoothing the effect of WLC capping
Workload Licence Charge (WLC) capping is in effect when your four-hour rolling average
millions of service units per hour (MSU) consumption is greater than the defined capacity
MSUs set in the Hardware Management Console (HMC).

The MSU capacity of the LPAR can be burned with unimportant workloads (often during the
night shift), and the LPAR can be capped then for a long time.

According to your particular settings, the capping effect is abrupt and can harm workloads
such as TSO.

Resource Groups can be implemented to smooth this effect. This can lead to having a night
and day shift service policy override that adds or removes the Resource Group. The
Resource Groups can, for example, be added only in a period of the night shift and then
removed.

Adding a Resource Group will probably elongate some CPU bound workloads during the
night shift, but this will help you avoid reaching the four-hour rolling average MSU limit and
will give consumption flexibility to the LPAR.

This is the implementation scenario. The machine is a z990 software model 303 rated at 191
MSU. Three LPARs are defined as shown in Figure 3-3: LPAR1, LPAR2, and LPAR3.

Figure 3-3 LPAR configuration

Note that the percentage share calculated from the LPAR weight and the percentage share
calculated from the WLC definition are close. This will reduce the four-hour rolling average

Note: If the work needs to overachieve its goal to provide the required service, it would be
better to adjust the goal.

Machine-type 2084-303

MSU 191

WhiteSpace 0

LPARname LPAR1 LPAR2 LPAR3

W(WEIGHT) 500 200 300
%SHARE-W 50.00% 20.00% 30.00%

DC(MSU) 96 38 57
%SHARE-D 50.26% 19.90% 29.84%
Chapter 3. WLM functions 83

capping effect. We recommend setting up your configuration in this way. This will not be
possible if your configuration has fewer MSU defined than the machine total number of MSU.

All of these LPARs have two logical processors.

The SU/s that can potentially be delivered in the physical machine is computed by selecting
the physical machine model from the SU/s table and multiplying this number by the number of
physical processors. In our example, the SU/s of a single engine of a z990-303 is
20075.2823. The total SU/s that can be delivered will be 60225.8469 SU/s.

LPAR2 is allowed to use 19.90% of this total, which is 11442.9109 SU/s.

We now have all of the information to make subsets of this potential SU/s usage and spread it
into various Resource Groups.

For example, if we want to limit specific jobs to one third of the machine, then we create a
Resource Group with 3814.30 SU/s. Policy override can help with setting on or setting off a
Resource Group in a service class.

Simulating a transaction rate goal for batch jobs
This section examines a particular usage of the MINIMUM SU/s setting in a Resource Group.

This MINIMUM value can be used to simulate a transaction rate goal for batch jobs. Let us do
some math:

Transaction Rate (TR) = Number of ended transactions / Elapsed Time

Also, TR = N / (Tt+Tr), where:

� N = average number of users logged on
� Tt = average user think time
� Tr = average transaction response time

WLM cannot manage TR because TR depends on Tt and N, which are beyond the scope of
the current controls.

However, if you have accurate information about a particular set of batch jobs, you can
emulate such a goal by setting a MINIMUM value (expressed in SU/s) in the Resource Group
associated with a batch service class. Let us call this goal Target_TR.

The Target_TR formula is:

MIN CPU SU/s = Target_TR x CPU_SUs / (#_Ended_Jobs)

Note: In this particular case, the SU/s calculation is done at the machine level and not at
the LPAR level because the MSU is a machine level rating and a percentage of this MSU
rating is required. This is different from calculating the SU/s at the LPAR level, which takes
into account the number of logical processors.

Note: Here is a discussion about a particular usage of the MIN value in a Resource Group.
It is not a general guideline nor a recommendation. It will be used at your own risk and only
if you have a specific type of batch throughput that is described in the section.

Note: To be consistent with the units of the MINIMUM (SU per second), Target_TR is
expressed in #Jobs / 60 seconds. For example, if you want 40 jobs per minute, you specify
Target_Tr as 40/60.
84 System Programmer’s Guide to: Workload Manager

To derive the MIN CPU SUs/sec, we need to capture how many CPU service units are
consumed on average (along an RMF interval) per job. Calculate this by dividing CPU_SUs
by the #_Ended_Jobs. If we multiply this ratio by our Target_TR, we derive the amount of
batch CPU SUs/sec that we want to guarantee. Keep in mind that we are working with
average values, and that these can be very different in other time periods. Also, WLM cannot
guarantee such a minimum, if there is not a demand, such as few initiators and idle initiators.
Also, recall that the Resource Group minimum is not enforced as is maximum capping value.

You can obtain CPU_SUs and #_Ended_JOBs from a representative period of time from the
WKLD RMF report.

Recall that this MIN refers to raw CPU service units ((not multiplied by the service definition
coefficient (SDC)); the CPU SDC is 1.0 (as recommended) or you need to adjust it.

Let us evaluate a scenario based on this reduced RMF report (Example 3-4).

Example 3-4 Batch Activity report

TRANSACTIONS ---SERVICE----
AVG 129.69 IOC 12511K
MPL 129.66 CPU 207042K
ENDED 2891 MSO 196650K
END/S 1.61 SRB 4891K
#SWAPS 646 TOT 421094K
EXCTD 0 /SEC 234242

To match the formula, we have:

� CPU_SUs from the report in the column SERVICE at the CPU and SRB rows. Our value is
207042k. Note that we do not use the “k” unit in our calculation.

� #_Ended_JOBs from the report in the column TRANSACTIONS at the ENDED row. Our
value is 2891.

� We want to evaluate what the MIN CPU SUs/sec for Target_TR = 40 jobs per minute
should be.

The formula is:

� MIN CPU SU/s = Target_TR x CPU_SUs / (#_Ended_Jobs)
� Target_TR = 40/60
� CPU_SUs (TCB+SRB) = 211933k
� #_Ended_Jobs = 2891

The result is (40/60) x (211933 / 2891) = 48.8 K SU/s.

So, if your business needs 40 jobs/minute, the MINIMUM Resource Group value SU/s should
be set at 48800.

3.1.2 CPU critical
In this section, we explain the feature available in WLM to guarantee the dispatching priority
of selected service classes.

When you assign long-term CPU protection to critical work, you ensure that less important
work will generally have a lower dispatch priority. (There are some rare exceptions, such as
when other work is promoted because it is holding an enqueue for which there is contention.)
This protection can be valuable for work that is extremely CPU-sensitive, such as certain
CICS and IMS transactions.
Chapter 3. WLM functions 85

It is possible that work in service classes with lower importance gets higher dispatch priority
than work with a higher importance. Why? The CPU adjustment algorithm attempts to
optimize the CPU usage by:

� Service consumption of the work
� Importance of the work
� Goal definition of the work

As a result, a service class with low importance, low goal definitions, and low service
consumption can get the highest available dispatch priority in the system. This is not a
problem as long as the work behaves well. But, it can hurt work of higher importance when
the work starts to use large amounts of CPU in an unpredictable manner. This often
happened in CICS when, after a low activity period (lunch time), people started to log on and
experience response time elongation. After some policy adjustment, WLM gave CICS the
proper dispatching priority and things ran fine again. The purpose of the CPU CRITICAL
feature is to eliminate this problem.

CPU CRITICAL
The CPU CRITICAL feature protects work by not allowing work with lower importance to get a
higher dispatch priority.

Work that needs protection is flagged. The result is that:

� All work with higher or equal importance can still compete freely for CPU resources with
the protected service class.

� All work with lower Importance never gets above work with higher or equal Importance
goals.

CPU CRITICAL can help in situations where work of lower importance might negatively
impact work of high importance (for a short but visible period).

Do not overuse this feature; otherwise, you do not leave enough capability for WLM to
efficiently balance the available CPU resources across the service classes in order to meet
goals. WLM not only tries to meet the goals of the highest importance work, but also of lower
importance work if the resource permits it.

CPU CRITICAL in action
Figure 3-4 on page 87 shows the effect of the feature: Service class X has been flagged as
CPU CRITICAL (CC). All service classes having an IMPORTANCE higher than or equal to
service class X will compete for CPU resource access (ServClas Z in Figure 3-4 on page 87).
service classes Y1 and Y2 will never be allowed to have a DP higher than service class X,
because their IMPORTANCE is lower.
86 System Programmer’s Guide to: Workload Manager

Figure 3-4 CPU CRITICAL in action

Who should use CPU CRITICAL
As we advise in the preceding section, use this feature for a workload of high business
importance.

CICS production workloads and IMS production workloads are good candidates for this
feature, because their activity can be subject to fluctuations.

Where to specify CPU CRITICAL
CPU CRITICAL is an attribute for a service class, so it is set in the service class definition, as
shown in Example 3-5.

Example 3-5 CPU CRITICAL setting

Modify a Service Class
 Command ===> __

 Service Class Name : CICSW
 Description WAS CICS transactions
 Workload Name WAS (name or ?)
 Base Resource Group ________ (name or ?)
 Cpu Critical YES (YES or NO)

 Specify BASE GOAL information. Action Codes: I=Insert new period,
 E=Edit period, D=Delete period.

 ---Period--- ---------------------Goal--------------------
 Action # Duration Imp. Description
 __
 __ 1 1 80% complete within 00:00:00.150

2 3 4

2 3 2

2 3 0

2 2 8

2 2 6

…

…

2 3 6

2 3 8

2 4 0

2 4 2

2 4 4

2 4 6

2 4 8

2 5 0

2 5 2

2 3 4

2 3 2

2 3 0

2 2 8

2 2 6

…

…

2 3 6

2 3 8

2 4 0

2 4 2

2 4 4

2 4 6

2 4 8

2 5 0

2 5 2

D P

S e r v C l a s = X , I m p = 3 , C C = Y

S e r v C l a s = Z , I m p = 3 , C C = N

S e r v C l a s = Z , I m p = 2 , C C = N

S e r v C la s = Y 1 , I m p = 4 , C C = N

S e r v C la s = Y 2 , I m p = 5 , C C = N
Chapter 3. WLM functions 87

3.1.3 Storage critical
This is similar to CPU critical in the way that it protects service class storage from being
stolen from lower importance work.

When you assign long-term storage protection to critical work, WLM restricts storage
donations to other work. This option can be useful for work that needs to retain storage during
long periods of inactivity, because it cannot afford paging delays when it becomes active
again. With long-term storage protection assigned, this work loses storage only to other work
of equal or greater importance that needs the storage to meet performance goals.

Storage of protected service classes is only taken when the system runs in conditions that are
short on storage. See Figure 3-5.

Figure 3-5 STORAGE CRITICAL in action

In Figure 3-5, the Imp=3 service class with the storage critical attribute is also protected
against the Imp=3 service class without the storage critical attribute.

But if the system runs into serious storage constraints, this mechanism does not protect the
work anymore.

Also, service classes with higher importance can use the frames, but not before the Imp=4 or
Imp=3 service classes with no storage protection run out of frames.

Other characteristics are that storage remains protected even if no activity is occurring any
longer. That is important for online regions (CICS and IMS) that do not show much activity
overnight.

A safety valve exists: 25 pages per address space per hour go away.

Who should use STORAGE CRITICAL
Online workloads (CICS and IMS) that do not show much activity overnight should use
STORAGE CRITICAL.

IRLM that has erratic activity and can be protected against page stealing should use
STORAGE CRITICAL.

Where to specify STORAGE CRITICAL
STORAGE CRITICAL is an attribute for an address space or for the classification rule for
CICS and IMS work.

� STORAGE CRITICAL for an address space

Address spaces types, such as JES2 or STC, have explicit protection for their frames.

Paging Rate

0

50

100

150

200

250
300

350

Imp=3,ExVel=1,Stg Crit Imp=3,ExVel=1,Stg Not Crit

Imp=4,ExVel=20,Stg Not Crit

Storage Consumption in Frames

0

2000

4000

6000

8000

10000

Imp=3,ExVel=1,Stg Crit Imp=3,ExVel=1,Stg Not Crit

Imp=4,ExVel=20,Stg Not Crit
88 System Programmer’s Guide to: Workload Manager

An address space must be in a service class that meets two requirements before it can be
storage-protected:

– The service class must have a single period.

– The service class must have either a velocity goal, or a response time goal of over 20
seconds.

� STORAGE CRITICAL for the classification rule for CICS and IMS transactions

Implicit protection of the address space that executes the CICS and IMS transaction

� STORAGE CRITICAL for non-managed service class

You can specify STORAGE CRITICAL for an address space with the SYSTSC service
class.

Example 3-6 shows the specification in JES.

Example 3-6 STORAGE CRITICAL in JES

Modify Rules for the Subsystem Type Row 1 to 14 of 18
 Command ===> __ SCROLL ===> PAGE

 Subsystem Type . : JES Fold qualifier names? Y (Y or N)
 Description . . . JES TYPE

 Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 <=== More
 --------Qualifier-------- Storage Manage Region
 Action Type Name Start Critical Using Goals Of

 ____ 1 TN ITSOB* ___ YES TRANSACTION
 ____ 1 TN ITSOR* ___ NO TRANSACTION

Example 3-7 shows the specification in CICS (subsystem classification rules).

Example 3-7 STORAGE CRITICAL in CICS

Modify Rules for the Subsystem Type Row 1 to 9 of 9
Command ===> __ SCROLL ===> PAGE

Subsystem Type . : CICS Fold qualifier names? Y (Y or N)
Description . . . CICS SERVER

Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 <=== More
 --------Qualifier-------- Storage Manage Region
Action Type Name Start Critical Using Goals Of

 ____ 1 SI CICSPCA1 ___ YES N/A
 ____ 1 SI SCSCERW1 ___ NO N/A
 ____ 2 TN TRDL ___ NO N/A

Note: These two requirements only apply to the address spaces classified under
subsystem types: ASCH, JES, OMVS, STC, and TSO.

Note: A service class can have storage-protected and unprotected address spaces.
Chapter 3. WLM functions 89

3.1.4 Initiator dispatch priority
Initiator dispatch priority control provides the installation with the ability to set dispatch priority
for initiators that have not been assigned to a service class below the dispatch priority for
CPU-critical workloads.

This feature allows the control of the dispatch priority of initiators before job execution.

It applies to JES, APPC, and OMVS initiators and is implemented in a new parameter
INITIMP in PARMLIB IEAOPTxx member.

Initiator behavior
Initiators run in SYSSTC at a dispatch priority of x'FE' and might use lots of CPU before a job
is classified and executed in different areas such as:

� Installation-dependent tasks, such as exit routines for SAF, SMS ACS, or INITs.
� This can potentially prevent critical work of high importance from access to the CPU.
� This potential behavior becomes more prevalent with a decreasing number of CPUs.

The goal of this implementation is to make sure such work does not impact critical online
work, such as CICS, IMS, or DB2. Importance-based initiator dispatching control is
implemented through specification of the new parameter INITIMP in IEAOPTxx PARMLIB
member. For further details on this parameter and how to use it, refer to 4.2.1, “IEAOPTxx
usage” on page 114.

3.1.5 WLM CPU preemption
Think of preemption as the z/OS dispatcher interrupting a currently executing unit of work in
order to dispatch higher priority work.

The z/OS dispatcher operates in a reduced preemption mode. The dispatcher uses this mode
to interrupt an executing unit of work when a higher priority unit of work becomes ready to
execute, but only after a brief delay period, the length of which is monitored and dynamically
adjusted to achieve optimum performance. Reduced preemption can also be detrimental to
system performance in situations where high priority work executes for only a short time. The
amount of time that reduced preemption delays work can actually exceed the required
execution time.

3.1.6 ENQ management
SRM provides an interface (Sysevent EnqHold/EnqRlse) that resource managers can use to
signal that they are waiting for a resource that is held by someone else. This helps avoid
critical work on your system, such as DB2, from being blocked waiting for resources, such as
RACF® databases, IRLM locks, or latches, just because the blocker has low priority, is
swapped out, or is not receiving services for any number of reasons.

Awareness of contention situations in authorized resource managers other than GRS, for
example, is implicitly part of this solution. WLM enqueue management establishes the
necessary WLM infrastructure, and we expect that authorized resource managers over time
will support this effort.
90 System Programmer’s Guide to: Workload Manager

An address space or enclave is promoted in terms of dispatch priority when it holds a
resource that another address space or enclave wants. The resource manager indicates this
situation to SRM through an ENQHOLD-sysevent. By promoting the address space or
enclave for a limited amount of time, the system hopes that the holder gives up the resource
faster than it usually does with a lower-dispatching priority. Also, while being promoted, the
system ensures that the address space or address space associated with the enclave is not
swapped out.

When a contention disappears, the resource manager notifies SRM through an
ENQRLSE-sysevent.

You can set the enqueue promotion interval, shown in Figure 3-6, by the installation through
the ERV-option in IEAOPTxx-parmlib member. The ERV-option specifies the CPU service
units that an address space or enclave can absorb while it is promoted before the promotion
is taken back.

In goal mode, the enqueue promotion dispatch priority is determined dynamically at every
policy adjustment interval (10 sec). It can change based on available processing capacity and
the amount of high dispatch work in the system. Address spaces are promoted to that priority
if their current dispatch priority is not already higher than that.

Figure 3-6 Enhanced enqueue management

SRM might promote an address space or enclave multiple times if SRM receives multiple
notifications that work is waiting for the resource. Also, while there is an outstanding
contention release notification, quiesced work is kept swapped in as long as there is ready
work to run. This includes address spaces associated with enclaves.

SMF type 30 is expanded by a field in the processor accounting section that contains the
CPU time consumed while enqueue is promoted. For more information, refer to z/OS System
Management Facilities (SMF), SA22-7630.

The ERV parameter in PARMLIB member IEAOPTxx controls the number of CPU service
units that an address space or enclave can absorb in a situation of enqueue contention. For
further details about this parameter, refer to 4.2.1, “IEAOPTxx usage” on page 114.

3.2 Server address space management
WLM provides a server address space management function. This function takes advantage
of the new business unit of work (enclave) and allows WLM to manage the server address
spaces of a work manager subsystem.

The design of server address space management addresses the following questions:

� If the goals are not met, can an additional server improve the performance index?

Promotion Interval Promotion Interval

EnqHold EnqHold EnqHold EnqRlse

time

promotion
Chapter 3. WLM functions 91

� If there is a resource constraint (CPU or storage) in the system, how do you reduce the
activity of server address spaces?

� When should you decrease the number of server address spaces?

� Will the creation of a new server address space adversely impact the performance of
other, more important goals?

The work manager subsystems that use the queuing manager services are getting the
benefits of server address space management. Examples of IBM-supplied work managers
that use these services are:

� DB2 for stored procedures
� Component Broker
� HTTP scalable Web server (IWEB)

These work managers use WLM services to permit workflow from their network-attached
address spaces, through WLM, and into server address spaces for execution. We call the
network-attached address spaces queue managers also and the server address spaces
queue servers.

The following components participate in meeting the goal:

� Work manager

A subsystem or work manager routes transactions to WLM, identifies the server JCL to
WLM, and provides shell services for applications.

� WLM:

– Creates or deletes server address spaces

– Directs work into the server address spaces

– Decides when to create a new server address space

– Reports on goal achievement

– Monitors the performance of transaction environments and gathers performance
information

3.2.1 Application Environment
The server address management function is implemented through the Application
Environment concept. An Application Environment is a grouping of transactions belonging to
a work manager that have similar data definition and security requirements and therefore can
be run in servers started by the same procedure. An Application Environment can have a
system-wide or sysplex-wide scope, depending of the structure and capabilities of the work
manager using the Application Environment. The WLM services, which the work manager
uses, dictate the scope of the Application Environment. The queuing manager services
provide system scope, and routing services provide sysplex scope for an Application
Environment.

You must define your Application Environments and assign incoming requests to a specific
Application Environment. JES2 and JES3 do not need special Application Environment
definitions to exploit the server address space management functions.

WLM manages a separate queue for every Application Environment, and the server address
spaces that are managed by WLM are created to serve work associated with a specific
Application Environment queue. Defining multiple Application Environments allows you to
separate your workload into different address spaces. In addition, within an Application
92 System Programmer’s Guide to: Workload Manager

Environment, there is a separate queue for each service class, which means that work that is
run with different goals runs in separate address spaces and can be managed independently.

The workload requirements for a given application can determine that multiple server address
spaces should be activated. WLM decides to activate a new address space based on the
following information:

� There is available capacity (CPU and storage) in the system and work in a service class is
delayed waiting on the WLM queue.

� A service class is missing its goals, it is suffering significant queue delay, and other work
(donor) in the system can afford to give up resources to the work that is missing its goals
(receiver).

There is no mechanism provided for client intervention in this WLM process, other than
the ability to limit the number of servers to one. WLM controls the activation and
deactivation of an address space and also controls the number of server address spaces.

Application Environment queues
Various work requests (transactions and jobs) for a given Application Environment can have
vastly different characteristics, resource consumption patterns, and requirements. For better
control by WLM in goal mode, each Application Environment queue is logically divided into a
set of subqueues. Each unique combination of Application Environment and service class
defines a single Application Environment queue, and each server address space can process
requests from only one queue.

Transaction flow in an Application Environment
In this section, we give a short explanation about the transaction flow in an Application
Environment:

1. A transaction reaches the work manager (WM), and the work manager checks the request
against its definition. If there is no match against an Application Environment for that
request, it is processed in the WM address space.

2. If the request matches an Application Environment, the work manager creates an enclave,
using the WLM services, and sends the request to WLM. If an enclave already exists, that
enclave is used for the request.

3. If a new enclave is created, WLM checks its classification rules and associates a service
class with the request.

4. WLM enqueues the transaction to an Application Environment queue serving the
transaction’s service class.

5. If there is no server address space active to serve the queue, WLM starts a new server
address space. After the server address space initializes and connects to WLM, it selects
the transaction from the queue and processes it.

6. If a server address space already exists, it selects the transaction and processes it.

Application Environment and transaction flow example
Figure 3-7 on page 94 shows an Application Environment example for multi-scalable HTTP
Server (IWEB).

Note: Remember that for every Application Environment queue, WLM starts at least
one address space. Therefore, do not specify too many service classes in order to
avoid having WLM start too many address spaces.
Chapter 3. WLM functions 93

Queue Manager (QM) AS, started manually or by automation, receives the incoming
transaction from TCP/IP: It either executes it if the request does not match against the
defined AE or passes it to WLM.

WLM defines SC, creates an enclave, and places the transaction into the Application
Environment Queue (AEQ). The transaction is executed next by the Queue Server (which
receives sockets).

The Queue Server ASs (started and managed by WLM) are responsible for executing the
transaction, which is taken from WLM AEQ queues.

Sysplex-wide resource managers, such as CICS, IMS, and DB2 can receive the transaction
through fast CGI.

WLM is involved in:

� Enforcing goals and creating independent enclaves with TCBs
� Controlling the number of QS ASs, based on the goal and delay_for_server state

Any type of goals, Resource Group, and duration are allowed.

Figure 3-7 Application Environment and transaction flow example

Application Environment exploiters
Table 3-1 on page 95 shows the current Application Environment exploiters.

Queue Manager

Queue Server

Queue Server

Queue Server

timer

http: accept

https:
accept

log manager

cache
manager

Classification
Rules

ApplEnv
Directive

Worker
Thread

Application
Environment

Queue

timer

log
manager

.

.
. . .

Worker
thread

PUTWORK GETWORK

WLM

http: //...

AE 1

Worker thread

AE 2

timer

timer

log manager
94 System Programmer’s Guide to: Workload Manager

Table 3-1 Application Environments

3.3 Workload routing support
This section explains the workload routing support available in WLM.

Routing support can provide multiple benefits:

� High availability through redundancy.

� High performance through increased cluster efficiency, business goals, and importance
considerations.

� Distribution of work across the Parallel Sysplex cluster according to the systems’ load.
This distribution avoids overloading systems with serious storage constraints in favor of:

– Systems where similar work meets its goals
– Underutilized systems
– Systems where the least important work can be displaced

The implementation variations can be:

� Session placement with VTAM® generic resources
� Transaction routing using sysplex routing services

3.3.1 VTAM generic resources
A generic resource is a method of allowing multiple application programs to be known by a
common name. The advantages are that users do not have to be aware of sysplex topology,
and sessions are automatically balanced across the sysplex.

Subsystem Subsystem type for classification

DB2 Stored Procedures � DDF

WebSphere
� HTTP Scalable Webserver
� MQSeries workflow

CB
� IWEB
� MQ
Chapter 3. WLM functions 95

The major
environments are
CICS, IMS,
Distributed DB2, TSO,
and APPC.

A target system
algorithm is based on
a table that tracks
service consumed by
importance. The
objective is to send
work where there is
available capacity, or if
there is no available
capacity, where the
least important work
will be displaced.

Target service is
based on work type.

The routing decision
for VTAM Generic

Resources also takes into account the Performance Index (PI) of the target servers. This
means that, beside the capacity, how well the target server achieves its goal is a factor for the
routing decision.

The table is built in importance level as
follows:

�Level 0: System work in service classes
SYSTEM and SYSSTC

�Level 1 to 5: Importance level from
service definition

�Level 6: Discretionary work

�Level 7: Unused service

Each level includes service at its level
and all lower levels.

Summaries contain 1, 3, and 10 minute
averages.

VTAM exit customization
VTAM calls exit ISTEXCGR in SYS1.SAMPLIB during generic resource resolution. You must
customize exit ISTEXCGR in order for it to have full capabilities. The coding example
(Example 3-8 on page 97) is self-explanatory and tells you which OR IMMEDIATE (OI)
instructions coding you should choose to enable all of the exit capabilities.

VTAM

VTAMVTAM

WLM

WLM

WLM

CICS1

CICS2CICS3

VTAM

WLM

Network Node
SYS1

SYS2SYS3

AIRLINE-RESERVATION
ISTGENERIC

Logon routed to
SYS2 based on
available capacity

100%

99% 85%

U n u s e d (w a i t t im e)7

L e v e ls 6 to 76

L e v e ls 5 to 75

L e v e ls 4 to 74

L e v e ls 3 to 73

L e v e ls 2 to 72

L e v e ls 1 to 71

L e v e ls 0 to 70

C u m u la t iv e S e r v ic eIm p o r ta n c e L e v e l

U n u s e d (w a i t t im e)7

L e v e ls 6 to 76

L e v e ls 5 to 75

L e v e ls 4 to 74

L e v e ls 3 to 73

L e v e ls 2 to 72

L e v e ls 1 to 71

L e v e ls 0 to 70

C u m u la t iv e S e r v ic eIm p o r ta n c e L e v e l
96 System Programmer’s Guide to: Workload Manager

Example 3-8 ISTEXCGR exit

*
GENRSCRS DS 0H BEGIN RESOLUTION
 MVC GRREXIT,NULL SET EXIT CHOICE TO NULL
 OI GRRFLAG1,GRRFWLMX TURN ON CALL WORK LOAD MANAGER
* BIT AND DEFAULT OFF CALL
* GENERIC RESOURCE EXIT BIT @N1C
* /**
* /* The following is sample code to turn ON all GRRFLAG1 bits *
* /* It can be modified to set the preferred bits ON *
* /* OI GRRFLAG1,GRRFUVX+GRRFWLMX+GRRFNPLA+GRRFNPLL *
* /* *

3.3.2 Sysplex routing
Sysplex routing allows a program, which routes work to multiple systems, to choose systems
based on their existing workload.

A router asks WLM for advice such
as where to route work in a
sysplex, for example, to Sysplex
Distributor at the frequency of
every 1 to 3 minutes.

WLM returns a list of eligible
servers with a weight assigned to
each server.

Weight represents the relative
volume of requests until WLM is
asked for recommended servers
the next time, for example:

�Servers 1 and 2 should receive
1/4 of the requests.

�Server 3 should receive 1/2 of the
requests.

Recommendation criteria:

�Send work to systems with idle
capacity.

� Find the system with the least important work that can be displaced, if no idle capacity
exists.

� Do not recommend systems with serious storage constraints, unless all systems are
constrained.

The TCP/IP domain name server (DNS), in conjunction with several IP servers, uses this
function to allow the spread of IP requests across multiple systems.

The sysplex routing services allow work associated with a server to be distributed across a
sysplex. They are intended for use by clients and servers.

In terms of the sysplex routing services, a client is any program routing work to a server. A
server is any subsystem address space that provides a service on an MVS image.

NETID LU-Name Server
W eight

NET1 LU1 2

NET2 LU2 2

NET3 LU3 4

5%
cumulative

service

Router

NET1
LU1

Server 1

NET2
LU2

Server 2

NET3
LU3

Server 3

W LM W LM W LM

Service Summaries

Chapter 3. WLM functions 97

The sysplex routing services enable distributed client/server environments to balance work
among multiple servers. These services help the distributed programs make the routing
decisions, rather than each installation make the routing decisions.

The sysplex routing services provide information for more intelligent routing. They do not
route or distribute work requests. The server must use its existing routing mechanisms.

When a server is ready to receive work requests, it issues the IWMSRSRG macro to register
itself to WLM. The server identifies itself by providing the following information:

� Location name

� Network ID

� LU name

� Stoken (the space token that identifies the server address space)

� Optionally, a health indication. This allows the server to indicate if there are constraints
that might stop it from taking on new work, even when the system itself is not heavily
loaded. The value is in the range of 0 (not acceptable) to 100 (acceptable).

WLM then makes this information available to all z/OS images in the sysplex.

When a client wants to route work to a server, the client issues the IWMSRSRS macro for
a list of registered servers. To help the client decide where to route the request, this
macro returns an associated weight for every eligible server. The weights represent the
relative number of requests that each server should receive. The calculation of the
weights uses various capacity considerations. The weights allow changes in system load
and server availability to be factored into work distribution.

Calculation of server weight
The calculation of the server weight is based not only on the system CPU utilization but also
the health and performance of the server.

WLM builds a table recording the CPU capacity for each system in the sysplex. The CPU
consumption is recorded by Importance level. The Importance levels are listed in Table 3-2.

Table 3-2 WLM CPU capacity Importance levels

Each row contains the following fields:

� Number of service units consumed in three minutes at the given importance level and
below.

� Percentage of total capacity consumed in three minutes at given importance level and
below. For example, level 4 in the table has the service units consumed by Importance 4,
Importance 5, and discretionary work plus unused capacity.

Note: A client should issue the macro on a regular basis to stay current with the
changing conditions.

Level Usage

0 Used for service consumed by the system

1-5 Are the externally defined Importance levels

6 Is used for discretionary work

7 Is unused service (equivalent number of service units)
98 System Programmer’s Guide to: Workload Manager

The WLM algorithm occurs in the following order:

1. WLM scans the rows in the table in reverse starting with level 7 until it finds a level where
one or more systems have at least 5% cumulative service units of capacity. WLM then
uses this table level for all goal mode systems to assign relative weights.

2. A system weight is calculated for each system in the sysplex using the SU value in the
selected row in the table.

System weight = (SUs for this system at selected level * 64) / total SUs for all systems at
the selected level.

3. Finally, it calculates a server weight: Server weight = system weight / # of servers on
system.

If the SPECIFIC function is specified on the IWMSRSRS macro, additional factors are used
when calculating the server weight:

� The WLM performance index of the server

� Delays due to the queue time of any independent enclaves owned by the server

� The health factor indicated by the server

Example 3-9 shows a output produced by the Assembler program.

Example 3-9 Server weight calculation

*WLMREG--+---+
*WLMREG--|Location |Netid |Luname |Weight|
*WLMREG--+------------------+--------+--------+------+
*WLMREG--|TN3270E | |wtsc48 | 06 |
*WLMREG--+------------------+--------+--------+------+
*WLMREG--|TN3270E | |wtsc69 | 05 |
*WLMREG--+------------------+--------+--------+------+
*WLMREG--|TN3270E | |wtsc55 | 05 |
*WLMREG--+------------------+--------+--------+------+
.
*WLMREG--+------------------+--------+--------+------+
*WLMREG--|TCPIP |wtsc48 |TCPIP | 03 |
*WLMREG--+------------------+--------+--------+------+
*WLMREG--|TCPIP |wtsc48 |TCPIPA | 03 |
*WLMREG--+------------------+--------+--------+------+
.
*WLMREG--+------------------+--------+--------+------+
*WLMREG--|TEST_LOCATION |NETSC69 |LUSC69 | 64 |
*WLMREG--+------------------+--------+--------+------+
*WLMREG--|DB8F |USIBMSC |SCPD8F1 | 41 |
*WLMREG--+------------------+--------+--------+------+
*WLMREG--|DB8F |USIBMSC |SCPD8F2 | 22 |
*WLMREG--+------------------+--------+--------+------+
*WLMREG--|DB7Q |USIBMSC |SCPD7Q2 | 64 |
*WLMREG--+------------------+--------+--------+------+

Sysplex routing user: z/OS Load Balancing Advisor
The z/OS Load Balancing Advisor is a component of z/OS Communication Server, which
communicates with outboard load balancers (LBs) and one or more z/OS Load Balancing
Agents. The primary function of the z/OS Load Balancing Advisor is to provide external
TCP/IP load balancing solutions, such as the CISCO Content Switching Module (CSM), with
recommendations about which TCP/IP applications and target z/OS systems within a z/OS
sysplex are best equipped to handle new TCP/IP workload requests. The load balancer can
Chapter 3. WLM functions 99

then use these recommendations to determine how to route new requests to the target
applications and systems. (That is, how many requests should be routed to each target.) The
recommendations provided by the Advisor are dynamic; they can change as the conditions of
the target systems and applications change, and they include several key components:

� State of the target application and system

This includes an indicator about whether the target application or target system is
currently active. This allows the load balancer to exclude systems that are not active or do
not have the desired application running.

� z/OS Workload Management (WLM) system-wide recommendations

WLM recommendations provide a relative measure of a target system's ability to handle
new workload (as compared to other target systems in the sysplex). The WLM
recommendations are derived using several measures, including each system’s available
CPU capacity or capacity that can be displaced by higher importance workloads. The
latter is important for scenarios where systems might be 100% utilized, but some systems
might be running work that has a lower Importance level (as defined by the WLM policy),
and the work can therefore be displaced by a higher Importance level workload. You
retrieve this information by using the IWMSRSRS routing service of WLM.

� Application server health from a TCP/IP perspective

TCP/IP statistics for target applications are monitored to determine if specific server
applications are encountering problems keeping up with the current workload. For
example, is a target TCP server application keeping up with TCP connection requests?
Or, are requests rejected because the backlog queue is full? In scenarios where this
occurs, the recommendations passed back to the load balancers will be adjusted
appropriately so that the load balancer can direct fewer connections to any applications
that experience these problems.

Sysplex routing user: DB2 Connect
DB2 Connect™ Enterprise Edition servers provide load balancing and fault-tolerance when
routing connections to multiple sysplexes. When connected to a DB2 for OS/390 and z/OS
database server running in a data sharing environment, DB2 Connect spreads the workload
among the DB2 subsystems comprising the data sharing group, based on the system load
information provided by the WLM. This support requires DB2 for OS/390 Version 6 or later.
DB2 Connect receives a prioritized list of sysplex members from the WLM. Each sysplex
returns weighted priority information for each connection address. DB2 Connect server then
uses this list to handle the incoming CONNECT requests by distributing them among the
sysplex members with the highest assigned priorities. For load balancing, the list of sysplex
weighted priority information is obtained during each connection. If the DB2 Connect
connection concentrator is enabled, this list is also used when determining where to send
each transaction.

With the addition of the concentrator, DB2 Connect now has the ability to balance the
workload at transaction boundaries. You must enable the DB2 Connect concentrator in order
for this to work. You achieve different granularity of load balancing depending on the version
of DB2 on the host. If load balancing is running against DB2 for OS/390 Version 6.1 or later,
DB2 Connect receives an updated status from the WLM on each transaction.

Connection concentrator introduces a concept of Logical Agent (LA), which handles user
context while the coordinating agent (CA) continues to own the DB2 connection and thread.
When a new application user connects, the new application user is assigned an LA. CA is

Note: You do not need to change the z/OS Distributed Data Facility (DDF) configuration in
order to take advantage of the DB2 Connect sysplex exploitation.
100 System Programmer’s Guide to: Workload Manager

needed to pass SQL to DB2, so one is assigned as soon as a new transaction is initiated. The
key to this architecture is that CA is disassociated from the LA and is returned to the pool
when the transaction completes (commit/rollback). Another key feature is the method of
assigning CAs to new transactions in data sharing environments. DB2 Connect implements a
sophisticated scheduling algorithm that uses z/OS WLM information to distribute workload
across members of a data sharing group according to criteria set up in WLM. WLM is not only
aware of the load on each member, but also each member’s availability. This allows DB2
Connect to transparently relocate work away from failed or overloaded members to members
that are up and underutilized. When you set the number of maximum logical agents higher
than the number of coordinating agents, you activate DB2 Connect connection concentrator.

3.4 Soft capping
This section examines WLM management of soft capping to support Workload License
Charges (WLC).

Soft capping refers to capping dynamically controlled by WLM as opposed to capping, which
is applying a cap to a logical partition by selecting the “Initial Capping” field on the Hardware
Management Console (HMC).

To support WLC, you can specify a system capacity in millions of service units per hour
(MSUs). The CPU usage can spike above the set capacity temporarily, as long as the average
usage remains below the limit. WLM keeps a four-hour rolling average of the CPU usage of
the logical partition, and when the average exceeds the defined capacity limit, WLM will signal
LPAR to cap the logical partition.

Soft capping only applies to shared CPs, it does not apply to zAAPs nor zIIPs since z/OS
software licensing charges do not apply to these specialized processors.

3.4.1 Defined capacity
Defined capacity sets the capacity of an individual partition when soft capping is selected.
The Defined Capacity can be specified for each LP from the Hardware Management Console
using the Change Logical Partition task.

Figure 3-8 shows an example:

� Logical partition A01 is “soft capped” because a defined capacity has been specified for
the LP. WLM will manage the four-hour rolling average of CPU usage for the logical
partition and limits the consumption to 120 MSUs.

Note that the Defined Capacity field is enabled for CPs but disabled for IFAs or zIIPs tabs.

� Logical partition A02 is “hard capped” to a processing weight value of 10. The “initial
capping” box is checked.
Chapter 3. WLM functions 101

Figure 3-8 Change Logical Partitions Control

The four-hour rolling average MSU consumption is calculated for each logical partition every 5
minutes.

When the four-hour rolling average MSU consumption is greater than the defined capacity
MSUs, the logical partition must be capped at the HMC-defined weight (if possible) according
to the terms and conditions of the WLC software pricing rules.

At that time, WLM asks PR/SM™ to cap the logical partition at the HMC-defined weight value.

When WLM caps the logical partition, there are three possible scenarios:

� The percentage share of the logical partition processing weight is equal to the percentage
share of the defined capacity.

In this case, the capping is done at the logical partition processing weight. This is the best
and recommended situation.

� The percentage share of the logical partition processing weight is greater than the
percentage share of the defined capacity.

In this case, capping at the weight has no effect, because the logical partition has more
MSU than allowed. To enforce the percentage share of WLC, PR/SM subtracts a certain
number from the logical partition processing weight to match the desired percentage
share and calculates a “phantom” logical partition that receives the remaining unused
weight. This guarantees that other logical partitions are not affected by the weight
management, because the total logical partition processing weight stays the same.
102 System Programmer’s Guide to: Workload Manager

� The percentage share of the logical partition processing weight is lower than the
percentage share of the defined capacity.

WLM defines a cap pattern that repeatedly applies and removes the cap at the logical
partition processing weight. Over time, this looks as though the partition is constantly
capped at its defined capacity limit.

The cap pattern depends on the difference between the capacity based on the weight and
the defined capacity limit. If the weight is small compared to the defined capacity, the
capacity of the partition can be reduced drastically for short periods of time. This can
cause performance to suffer. Therefore, we recommend to keep both definitions as close
as possible.

3.4.2 Group capacity
Group capacity is similar to defined capacity, but it allows you to define a limit for LPARs as a
group instead of individually. Group capacity can work together with defined capacity: An
LPAR receives either its defined capacity or its share of the group capacity, whichever is less.

IBM introduces group capacity in z/OS 1.8. Partitions running earlier releases of z/OS are not
considered part of the group. Because capacities are defined in the HMC, hardware support,
available in the near future, will also be required.

3.5 Intelligent Resource Director
Intelligent Resource Director (IRD) is a set of functions implemented by actions on:

� z/OS
� WLM
� I/O supervisor (IOS)
� SAP

The functions are:

� LPAR CPU Management
� LPAR weight management
� Dynamic Channel Path Management (ESCON/FICON channels with Directors only)
� Channel subsystem priority queuing

Let us explain the purpose of these functions.

Originally, a CEC was designed to host just one copy of an operating system code (single
image). However, several modern business needs, such as the need for isolation, for ease of
installing new workloads, and for continuous operation, create lots of LPAR images under
LPAR in the same CEC.

Because each system is unique in itself with its own data, and program problems start to
arise with many logical partitions (LPs), such as complexity, unbalancing, and lack of
availability, the solution is to allow data sharing among the LPs through the implementation of
coupling facilities. Now, any transaction can run anywhere, and with dynamic load balancing
algorithms, we can balance the load in LPs in the same and different CECs. All the systems
are clones, because they can reach the same data and programs.

However, it is difficult to implement data sharing for certain types of data. Then, the
unbalanced behavior is not completely resolved. IRD introduces the idea of dynamically
taking the hardware (CPUs and channels) to the LPAR where it is most needed, therefore
fixing the problem. In other words, let us move the power to where it is necessary.
Chapter 3. WLM functions 103

This chapter does not cover IRD itself, but gives advice about how to have a WLM policy that
works properly with IRD.

z/OS Intelligent Resource Director, SG24-5952, explains all IRD functions and setup.

Policy considerations for IRD
This section addresses important considerations before you implement IRD.

Importance and goal of a service class
You must understand the importance of a service class as LPAR cluster-wide. The WLM
policy must not be done at a specific LPAR level, for example, IMPORTANCE 3 service
classes must serve the same types of work in the LPAR cluster.

This can be difficult when you have different types of LPARs in the LPAR cluster. For example,
you share CPU resources among production, pre-production, and development LPARs, or
you share CPU resources among production LPARs of different companies.

These examples highlight that you must review and synchronize the IMPORTANCE before
you start IRD.

Minimum number of logical processors
Certain software can suffer because of single engine LPAR configuration. This is software
that is often time-dependent and cannot wait for system actions such as SVC dump to
complete. A new IEAOPTxx parameter VARYCPUMIN available with z/OS 1.6 is designed to
limit the scope of WLM CPU management. The number of logical processors specified for a
specific LPAR cannot exceed the number of physical processors of the CPC.

3.5.1 Linux for System z LPAR management
This section explains how to enable non-z/OS CPU management.

If you have logical partitions running Linux or other non-z/OS systems, you can manage CPU
resources across these logical partitions in accordance with workload goals.

Non-z/OS partition CPU management allows WLM to shift weight from either z/OS or
non-z/OS partitions to another z/OS or non-z/OS partition in the same LPAR cluster.

Setting the cluster name
Before activating the Linux partition, specify the CP management cluster name under the
Options tab of the activation profile. This causes LPAR to group the Linux partition with the
appropriate sysplex.

Note: Non-z/OS partition CPU management does not support the management of
partitions running OS/390 systems.

Note: Linux® images must have shared CPs and must not be capped. Only standard
general purpose CPUs are supported; Integrated Facility for Linux (IFL) CPUs are not
supported.
104 System Programmer’s Guide to: Workload Manager

Setting the system name
To set the system name:

� For the Linux partition

For the Linux partition, the system name must be set in order to activate LPAR CPU
management. WLM needs the Linux system name in order to handle the Linux partition.
This also applies if you only use the PX qualifier. The sysplex name specified in the
service element panel must be the same as the z/OS sysplex name. The system name
must be unique in relation to the other system names in the same sysplex.

Set the system name by running the insmod hwc_cpi.o system_name=sysname command.
hwc_cpi.o currently ships in the directory /lib/modules/x.y.z/kernel/drivers/s390/char/,
where x.y.z is the kernel version.

If you change the Linux system name, then you must reIPL to make it known to LPAR CPU
management.

� For VSE/ESA™ and z/VM

VSE/ESA and z/VM set the system name during IPL.

Setting the goal
A new subsystem type SYSH is introduced for Linux CPU management. The following
restrictions apply to subsystem SYSH:

� SY and PX are the qualifiers that are valid for SYSH.
� No Resource Groups can be associated with service classes for SYSH.
� CPU protection cannot be assigned.
� SYSH supports velocity goals with single periods, but no discretionary goals.

3.6 Specialty processors
IBM currently supplies four processor types called specialty processors. See Figure 3-9 on
page 106. The Integrated for Linux (IFL) and the Internal Coupling Facility (ICF) processors,
the zAAP (z890, z990, and z9-109) and ZIIP (z9-109 only) are all specialty processors. Use
these processor types to offload certain types of work from the z/OS general purpose
processor:

� IFL can only run the Linux operating system, or z/VM in support of Linux.
� ICF can only run Coupling Facility Control Code (CFCC).
� zAAP is used by the IBM Java Virtual Machine (JVM) to execute Java code.
� zIIP is designed for processing certain type of database workloads.
Chapter 3. WLM functions 105

Figure 3-9 Specialty processors

The specialty processor consists of the same hardware as the general purpose processor.
Specific to specialty processors are:

� Cannot use them to IPL the z/OS operating system
� Do not handle I/O interrupts
� Do not add to WLC pricing charges
� Are not considered in IRD weight management
� Are not considered in WLM routing decisions
� Are not included in defined capacity computations and Resource Group management

With the z890 and z990, all the specialty processors belong to the ICF pool (zIIP, zAAP, IFL,
and ICF) and inherit their weight from the CP pool. The z9-109 processors belong to a
separate pool and their weight can be specified via the HMC. Specialty processors can be
shared across LPARs like standard processors.

3.6.1 Internal Coupling Facility Processor (ICF)
These processors can only run Coupling Facility Control Code (CFCC). They are not visible to
the z/OS operating system or applications. You use these processors to create a Coupling
Facility for use by the exploiters of Parallel Sysplex functions.

3.6.2 Integrated Facility for Linux Processor (IFL)
This processor can only run the Linux Operating System or z/VM in support of Linux.

Note: For planning and implementation of specialty processors, use the zSeries Processor
Capacity Reference Tool (zPCR). The zPCR tool and the documentation are available at:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS1381

Integrated Facility
for Linux (IFL)

2001

IBM System z9
Integrated Information
Processor (IBM zIIP)

2006
System z™

Application Assist
Processor (zAAP)

2004

Incorporation of
Java into existing
mainframe
solutions

Support for new
workloads and
open standards

Designed to help
improve resource
optimization for
eligible data
workload within the
enterprise

12
1

2

3
4

5
6

7
8

9

10
11

12
1

2

3
4

5
6

7
8

9

10
11

Internal Coupling
Facility (ICF)

1997

Centralized data
sharing across
mainframes
106 System Programmer’s Guide to: Workload Manager

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS1381

3.6.3 zSeries Application Assist Processor (zAAP)
zSeries Application Assist Processor (zAAP) brings Java to the mainframe in a new
characterizable physical unit (PU). The zAAP processor is a characterizable PU (as IFL, ICF,
and SAP) in the IBM System z machine models 990, 890, and z9-109, capable of only
executing Java instructions under the control of a JVM in z/OS 1.6.

Execution of the Java applications on zAAPs, within the same z/OS SMP LPAR as their
associated database subsystems, can also help simplify the server infrastructures and
improve operational efficiencies. For example, use of zAAPs could reduce the number of
TCP/IP programming stacks, firewalls, and physical interconnections (and their associated
processing latencies) that might otherwise be required when the application servers and their
database servers are deployed on separate physical server platforms.

zAAP can also help saving you IBM software charges in WLC, because you can have
additional Java capacity without affecting the total MSU/hour of the CEC. There is no
rewriting of the Java code to use the zAAP processor.

zAAP processors usually do not run z/OS code and cannot be used in IPLs. The maximum
number of zAAPs is equal to the number of CPs. A zAAP processor is defined in the LPAR’s
image profile.

CPU using and delay samples for zAAPs are accumulated by WLM and are considered in
policy adjustment decisions. Up to z/OS 1.7, WLM manages zAAPs as a extension of the
general purpose CP; starting with z/OS 1.8, work on zAAPs is managed independently.
zAAPs now contribute to using, delay samples, and service times. We call this functionality
zAAP processing enhancement.

The JVM is the only authorized zAAP user. The JVM requests zAAP switch authorization on
the initial entry. Other programs attempting to use zAAP authorization are rejected. The
instruction Store System Information (STSI) does not report zAAP capacity.

zSeries Application Assist Processor and Java code flow
The Java code task passes control to the JVM task, which interprets the application Java
code and sometimes compiles it with the Just in Time compiler (JIT). This flow is also valid for
WebSphere for z/OS, where the majority of the product code is written in Java. Both tasks run
in the same address space. Figure 3-10 on page 108 shows the flow.

Note: You must install APARs OA14131 and OA13953 on z/OS 1.6 and z/OS 1.7 to
enable the zAAP processing enhancement.
Chapter 3. WLM functions 107

Figure 3-10 zAAP processor and WebSphere

For WebSphere for z/OS, the minimum exploitation level is WebSphere 5.1 with Software
Developer Kit (SDK) 1.4 and z/OS 1.6.

3.6.4 zSeries Application Assist Processor positioning
This section describes the positioning of zAAP compared to normal CPU and dispatchable
unit management. For enabling JAVA to run on a zAAP, you must be at least at z/OS 1.6 and
JVM 1.4.

You can optionally decide which processors are eligible to run Java code at each installation.
For the z/OS Operating System, you do this in PARMLIB member IEAOPTxx. For the Java
code to run on zAAP, there are three parameters set in the startup options of the JVM.

The JVM parameters are:

� Ixifa -off: Java code is not allowed to run on zAAP.

� xifa - force: Projection of zAAP usage is turned on even if there is no physical zAAP, SMF
records are written, and Java code is allowed to run on zAAP if available.

� xifa - on: Java code is allowed to run on zAAP (default since JVM 1.4 with APAR
PQ86689).

The z/OS parameters in IEAOPTxx are (Figure 3-11 on page 109):

� IFACrossover = Yes (default): Eligible JVM code can run both in the logical CPUs’ zAAP or
in logical CPUs on standard general purpose CPs.

Standard ProcessorStandard Processor

WebSphere
Execute JAVA Code

zAAPzAAP

JVM
Switch to zAAP

z/OS Dispatcher
Suspend JVM task on z/OS
standard logical processor

z/OS Dispatcher
Dispatch JVM task on z/OS
standard logical processor

JVM

WebSphere

z/OS Dispatcher
Dispatch JVM task on z/OS

zAAP logical processor

JVM

Java Application Code
Executing on a zAAP

logical processor

JVM
Switch to standard

 processor

z/OS Dispatcher
Suspend JVM task on z/OS

zAAP logical processor
108 System Programmer’s Guide to: Workload Manager

� IFACrossover = No: Eligible JVM code only runs in the logical CPUs’ zAAP in the LPAR,
unless the zAAP’s CPs are not operational.

� IFAHonorPriority = Yes: WLM instructs the z/OS dispatcher to honor the Dispatchable Unit
(DU) dispatching priority independently of their zAAP affinity.

� IFAHonorPriority = No: WLM instructs the z/OS dispatcher to place DUs with zAAP affinity
with the lowest dispatching priority on the standard general purpose logical CPU. The
dispatching priority of the zAAP affinity DU is honored when dispatching in zAAP.

� ZAAPAWTM: This parameter controls the alternate weight management of SRM. Omit this
parameter to let it default, unless you want to disable alternate weight management, which
we do not recommend. If alternate weight management is turned off, standard CPs do not
help zAAP work.

Figure 3-11 IFACROSSOVER and IFAHONORPRIORITY combinations

In the case of WLC capping, WLM turns off honor priority before capping the LPAR. This
event is communicated to the z/OS dispatcher. In this situation, the regular logical CPs
process the zAAP DU work with a dispatching priority lower than discretionary. WLM turns on
honor priority again when the four-hour rolling average drops below the defined capacity limit.

3.6.5 WLM zAAP DUs states
Each 250 milliseconds, WLM samples the AS/enclave states. The introduction of zAAP DUs
generates changes in the counters:

� CPU Using: DU (from AS/enclave) is found executing on a regular CP (old).

� zAAP Using: DU (from AS/enclave) is found executing on a zAAP (new).

� zAAP_on_CPU Using: DU (from AS/enclave) that is eligible running on a zAAP is
executed on a regular CPU (new). This counter is key mainly if the dispatcher honors
global priorities for selecting DUs from the zAAP ready DU.

� CPU Delay: DU (from AS/enclave) is delayed for a regular CPU (old).

� zAAP Delay: DU (from AS/enclave) is delayed for a zAAP (new). Depends on the number
of zAAPs, the JVM workload, and the parameter HonorPriority.

Note: With IFAHonorPriority=YES specified, work is dispatched on the general purpose
logical CPUs even if the zAAPs are not fully loaded. Specifying IFACrossover=NO and
IFAHonorPriority=NO disables Java eligible work on the general purpose logical CPUs.

Standard processors run zAAP work at lowest
priority

NOYES

No zAAP elig ible work on standard CPs

YESNO

NONO

Standard processors can run zAAP eligible work
in priority order if the zAAPs become unable to
process all queued work

Notice: standard CPs are “asked for help”
therefore not all CPs may process zAAP
work at the same time

YESYES

IFAHONORPRIORITYIFACROSSOVER

New Behavior z/OS 1.6 and 1.7 with
OA14131+ OA15297/OA13953

IEAOPTxx Param eters
Chapter 3. WLM functions 109

The RMF CPU activity report tells you how busy zAAPs are.

3.6.6 z9 Integrated Information Processor (zIIP)
zSeries Integrated Information Processor (zIIP) is a characterizable PU (as IFL, ICF, SAP, and
zAAP) in the IBM System z machine model z9-109 that is capable to execute eligible
database workloads.

Currently, the only product from IBM that supports redirecting some of its work to a zIIP is
DB2 V8; however, the API to use the zIIP is available to other Independent Software Vendors
(ISVs). The benefits of using a zIIP processor to execute DB2 code are the CPU cycles that
are saved on the general purpose processor. It also saves IBM software charges in WLC,
because you can have additional capacity without affecting the total MSU/hour of the server.

Work which is enabled to run on a zIIP includes:

� Enterprise Resource Planning (ERP) or Customer Relationship Management (CRM)
application serving: For applications running on z/OS, UNIX®, Intel®, or Linux on System
z™ that access DB2 for z/OS V8 on a System z9™ via DRDA® over a TCP/IP connection,
DB2 gives z/OS the necessary information to have portions of these SQL requests
directed to the zIIP.

� Data Warehousing applications: Requests that utilize DB2 for z/OS V8 for long-running
parallel queries, including complex star schema parallel queries, might have portions of
these SQL requests directed to the zIIP when DB2 gives z/OS the necessary information.
These queries are typical in data warehousing implementations. The addition of select
long-running parallel queries can provide more opportunity for DB2 clients to optimize
their environment for Data Warehousing while leveraging the unique qualities of service
provided by System z9 and DB2.

� DB2 for z/OS V8 utilities: You can redirect a portion of DB2 utility functions that are used to
maintain index structures (LOAD, REORG, and REBUILD INDEX) that typically run during
batch d to the zIIP.

The support for zIIPs starts with DB2 Version 8 and z/OS 1.6.

In many respects, WLM support of zIIPs is equivalent to the zAAP support, but zIIP work is
still managed as an extension of general purpose processor work and zIIP work flows over to
general purpose processors, because there is no external control.

As with the zAAP processors, zIIP processors do not run z/OS code and cannot be used to
IPL. The maximum number of zIIPs is equal to the number of general purpose CPs. You
define a zIIP processor in the LPAR's image profile.

z9 Integrated Information Processor and DB2 code flow
In the sample shown in Figure 3-12 on page 111, DB2 requests coming into the system via
DRDA over a TCP/IP network are dispatched on z/OS within enclave SRBs. DB2 marks
portions of this work as zIIP eligible and the z/OS dispatcher directs this portion to the zIIP.

Note: zIIP is designed in a way that a program can work with z/OS to have a portion of its
enclave Service Request Block (SRB) work directed to the zIIP. The above types of DB2
V8 work execute in enclave SRBs where portions can be sent to the zIIP. Stored
procedures and user-defined functions do not use SRBs and, therefore, are not eligible.
110 System Programmer’s Guide to: Workload Manager

Figure 3-12 zIIP processor and DB2

3.6.7 z9 Integrated Information Processor positioning
You can set the following options for zIIP in IEAOPTxx:

� PROJECTPU = YES: This parameter enables the projection of zIIP usage, and SMF
records are written even if there are no zIIP processors available. You can analyze these
records to evaluate the implementation of a zIIP.

� ZIIPAWTM: This parameter controls the SRM alternate weight management for zIIPs.
Omitting this parameter takes the default, unless you want to disable alternate weight
management, which we do not recommend. If alternate weight management is turned off,
standard CPs do not help zIIP work.

3.6.8 WLM zIIP DU states
Each 250 milliseconds, WLM samples the enclave states. The introduction of zIIP DUs
generates changes in the counters:

� CPU Using: DU (from enclave SRB) is found executing on a regular CP.

� zIIP Using: DU (from enclave SRB) is found executing on a zIIP.

� zIIP_on_CPU Using: DU (from enclave SRB) that is eligible running on a zIIP is executed
on a regular CPU.

� CPU Delay: DU (from enclave SRB) is delayed for a regular CPU.

High utilization

For illustrative purposes only. Single application only.

Actual workload redirects may vary

Reduced utilization

Portions of
eligible DB2
enclave SRB
workload
executed on
zIIP

DB2/DRDA

DB2/Batch

Ent App DB2/DRDA

DB2/DRDA

DB2/DRDA

DB2/DRDA

DB2/DRDA

DB2/DRDA

DB2/DRDA

DB2/Batch

DB2/DRDA

DB2/DRDA

DB2/DRDA

DB2/DRDA

DB2/DRDA

DB2/DRDA

DB2/DRDA

DB2/DRDA

TCP/IP
(via Network

or
HiperSockets)

CP CP zIIP

Enterprise Applications that access DB2 UDB for z/OS V8 via DRDA over a TCP/IP connection
will have portions of these SQL requests directed to the zIIP

Using zIIP for Enterprise Applications

Note: There is no external control for zIIP execution, similar to zAAP.
Chapter 3. WLM functions 111

� zIIP Delay: DU (from enclave SRB) is delayed for a zIIP. Depends on the number of zIIPs
and the DB2 workload.

The RMF CPU activity report tells you how busy zIIPs are.

Note: You must install APAR OA16005 on z/OS 1.6 and z/OS 1.7 to enable zIIP reporting
support.
112 System Programmer’s Guide to: Workload Manager

Chapter 4. Implementation and workload
classifications

This chapter contains general steps and considerations when you implement Workload
Manager (WLM) in z/OS. This chapter discusses the steps needed to customize WLM for
your installation, for example, the service definitions needed to define your workload and
goals.

4

© Copyright IBM Corp. 2005, 2006, 2007. All rights reserved. 113

4.1 Overview
WLM goal mode requires that you are in a single system sysplex (monoplex) or a multisystem
sysplex. We assume prior implementation of required sysplex components has been
completed. WLM uses a specially formatted WLM couple data set where the service
definition will be written. This data set must be accessible by all systems in the sysplex. A
WLM ISPF application is used to define the service definitions, such as policy, workload,
service classes, classification rules, report classes, and so forth. These definitions represent
the performance objectives of the various workloads running in your system.

The following are the steps to implement goal mode:

1. Set up performance objectives.

2. Set up a service definition from the performance objectives.

3. Implement the WLM ISPF administrative application.

4. Allocate the WLM couple data set.

5. Make available the WLM couple data set to the sysplex.

6. Install your service definition on the WLM couple data set.

7. Adjust SMF recording.

8. Activate your service policy.

4.2 WLM implementation
The following sections describe in more detail the steps to implement WLM.

4.2.1 IEAOPTxx usage
The following IEAOPTxx parameters are used in goal mode:

� Special options:

– CNTCLIST: TSO/E clist transaction control
– DVIO: Directed VIO usage

� Adjusting constants:

– ERV: Enqueue residence constants
– RMPTTOM: SRM invocation interval constant

� CPU management constants:

– CCCAWMT: Alternate Wait Management

� Dispatching priority for JES, APPC, and OMVS initiators:

– INITIMP: Initial dispatching priority

� Pageable storage shortage constants:

• MCCFXEPR: First 16 megabytes fixed storage%
• MCCFXTPR: Online storage fixed %

� Central and expanded storage threshold constants:

– MCCAFCTH: Central storage low and OK threshold
– MCCAECTH: Expanded storage low and OK threshold
114 System Programmer’s Guide to: Workload Manager

� Selective enablement for I/O constants:

– CPENABLE: IO interruption threshold

� Swap rate scaling factor:

– SWAPRSF: Weight cost of doing exchange swap

� zAAP workflow:

– IFACROSSOVER: zAAP eligible work running on standard CP or zAAP CP only.
– IFAHONORPRIORITY: zAAP work in priority order or after discretionary work on

standard CP (see APARs OA14131, OA15297, and OA13953).

� zIIP Reporting:

– PROJECTCPU: Enable zIIP usage projection without real zIIP.

� LPAR Vary CPU management:

– VARYCPU: Availability of LPAR Vary CPU Management

– VARYCPUMIN: Minimum number of CPs to keep online during WLM LPAR
management (available from z/OS 1.6)

The recommended settings for some of the IEAOPTxx parameters are:

� MCCAFCTH (avqlow, avqokay)

Specifies the low and the OK threshold values for central storage. The lowvalue indicates
the number of frames on the available frame queue when stealing begins. The okvalue
indicates the number of frames on the available frame queue when stealing ends. With
APAR OA144409 installed, customers should take the default values for MCCAFCTH:

– avqlow is the maximum of 400 and .2% of pageable storage

– avqokay is the maximum of 600 and .4% of pageable storage

Refer to OW55729 and OW55902 for more information about MCCAFCTH settings.

� ERV

The enqueue residence value (ERV) specifies the absolute number of CPU service units
that an address space or enclave is allowed to absorb when it is possibly causing enqueue
promotion. This value is independent of the values of the service coefficients. During this
enqueue residency time, the address space (including the address space associated with
an enclave) is not considered for swap out based on recommendation value analysis. The
address space or enclave runs with a high enough priority to guarantee the needed CPU
time.

ERV is in effect for an address space or enclave that meets one of the following criteria:

– The address space or enclave is enqueued on a system resource needed by another
address space.

– An authorized program in the address space or enclave obtains control of the resource
(even if another address space does not need that resource) as a result of issuing a
reserve for a DASD device that is SHARED.

Until WLM enqueue management is fully operational in your environment, the following
recommendation might help you avoid certain enqueue-related contention situations in
your environment.

The default value for ERV is 500, which indicates that if an address space is swapped out
holding an enqueue, it should be swapped back in until it has either released the enqueue,
or has used 500 CPU service units. However, empirical analysis shows that this might not
be enough in today’s environments.
Chapter 4. Implementation and workload classifications 115

Therefore, you should ensure that work, on average, has enough CPU service time to
release the enqueue before being swapped back out again. You should verify the correct
value by looking at the report and evaluating whether the default value needs any further
change. Today, most installations run with an ERV of 50000.

By coding ERV=50000, you can avoid enqueue lockout situations where low priority or
discretionary workload can be swapped out while holding an enqueue.

This process is sometimes referred to as enqueue promotion. Enqueue promotion is
limited by the promotion interval, which is governed by your setting of the ERV value. This
limitation is enforced in order to prevent abuse of this facility by users who could
intentionally create contention in order to receive better service.

� CPENABLE

Specifies the low (ICCTPILO) and high (ICCTPIHI) threshold values for the percentage of
I/O interruptions to be processed through the test pending interrupt (TPI) instruction path
in the I/O supervisor (IOS). SRM uses these thresholds to control the number of
processors enabled for I/O interruptions.

Recommended CPENABLE settings are Figure 4-1.

Figure 4-1 Recommended CPENABLE settings

Refer to Flash10337. The link is:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/FLASH10337

� CNTCLIST

This specifies if the individual commands in a TSO/E CLIST are treated as separate
commands for transaction control. CNTCLIST=NO means that the CLIST is treated as a
single transaction. CNTCLIST=YES means that each command is to be treated as an
individual transaction. By specifying CNTCLIST=YES, SRM control of a TSO/E command
becomes the same whether the command is executed explicitly or as part of a CLIST.

Setting this to YES might help you improve the time it takes to log on if you have a long
TSO logon CLIST. A huge CLIST results in each CLIST command executing always in the
first period of the service class assigned to the user ID. None of the CLIST is executed in
the second or third period of the service class.

Setting this to NO helps you manage your TSO workload with a long CLIST. A CLIST that
consumes a lot of CPU is moved to the second performance period. This helps the short
TSO transactions that execute in the first period.

� INITIMP

Processor Family Basic

Mode
LPAR
Dedicated

LPAR
Shared

IBM System z9 N/A 10,30 10, 30
zSeries 990 (2084) N/A 10,30 10, 30
zSeries 890 (2086) N/A 10,30 10, 30
zSeries 800/900 (2066/2064) 10, 30 10,30 0, 0
9672 G5, G6 10, 30 10,30 0, 0
9672 G1, G2, G3, G4 10, 30 10,30 10, 30
MP3000 (1) 10, 30 10,30 0, 0
MP2000 (2), ASP3000(3) 10, 30 10,30 10, 30
ES/3090, ES9021 10, 30 10,30 0, 0
(1) Model Type = 7060, (2) Model Type = 200, (3) Model Type = 3000

116 System Programmer’s Guide to: Workload Manager

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/FLASH10337

This option is used to set the priority of initiators. In goal mode, the initiator is run in
service class SYSSTC with a dispatching priority of 254. The only way to change this
dispatching priority is through the INITIMP option. The INITMP value affects only the
system on which it has been set. The reason that you might want to lower the importance
of the initiators is that some installation exits might use a large amount of CPU if they are
invoked at Job selection/initialization.

The valid parameter settings for INITIMP are:

– INITIMP=0: The dispatch priority is set to the dispatch priority of service class
SYSSTC, which is 254. This is the default and recommended setting. This setting is
functionally equivalent to what took place prior to z/OS V1R5.

– INITIMP=1: The dispatch priority is set lower than the lowest dispatch priority for any
CPU-critical service class with an Importance of one.

– INITIMP=2: The dispatch priority is set lower than the lowest dispatch priority for any
CPU-critical service class with an Importance of two.

– INITIMP=3: The dispatch priority is set lower than the lowest dispatch priority for any
CPU-critical service class with an Importance of three.

– INITIMP=E: The dispatch priority is set to the enqueue promotion dispatch priority,
which is calculated dynamically and ensures access to the processor. This does not
guarantee that CPU-critical work always has a higher dispatch priority, but it should not
be negatively impacted.

The following are examples to show the interrelationship of these parameters and the
dispatching priority.

Example 1: The example shown in Figure 4-2 on page 118 has the following definitions in
SYS1.PARMLIB and the WLM service policy:

– The ONLINE service class in the service policy is defined with CPU-critical,
Importance 1.

– The INITIMP parameter (INITIMP=1) in the IEAOPTxx parmlib member specifies that
the initiator should have a dispatching priority (DP) that always has to be lower than
CPU-critical and Importance 2 work.

– As a result, all work for ONLINE always has a higher DP than initiators before job
execution.

– All other work also has a lower DP than the online service class work.

Note: In the event that INITIMP is specified as 1, 2, or 3 and there is no service class in
the active WLM policy that is defined as CPU-critical with an Importance of 1, 2, or 3,
dispatch priority is calculated as if INITIMP=E was specified.
Chapter 4. Implementation and workload classifications 117

Figure 4-2 Dispatching priority example 1

Example 2: The example shown in Figure 4-3 has the following definitions in
SYS1.PARMLIB and the WLM service policy:

– The STCAPPL service class in the service policy is defined with CPU-critical and
Importance 2.

– The INITIMP specification, (INITIMP=2), in the IEAOPTxx parmlib member specifies
that the initiator should have a dispatching priority that always has to be lower than
CPU-critical and Importance 2 work.

– As a result, the initiators are always below STCAPPL.

– Online work can have any dispatching priority below and above STCAPPL and the
other initiators.

Figure 4-3 Dispatching priority example 2

Refer to z/OS MVS Initialization and Tuning Reference, SA22-7592, for more information
about the specification of the INITIMP IEAOPTxx parameter.

INITIMP=1
Service Class Importance CPU Critical

Online Yes
STCAPPL No
HiBatch No
LoBatch No

IEAOPTxx Service Policy

Result
Online DP=243

Initiators DP=241

STCAPPL DP=239

HiBatch DP=237 LoBatch DP=237

1
2
3
4

INITIMP=2
Service Class Importance CPU Critical

Online No
STCAPPL Yes
HiBatch No
LoBatch No

IEAOPTxx Service Policy

1
2
3
4

Initiators DP=243

Result

Online DP=243

STCAPPL DP=245

HiBatch DP=239

LoBatch DP=237
118 System Programmer’s Guide to: Workload Manager

4.2.2 WLM ISPF application
You use the WLM ISPF application to define your service definition. These definitions are
stored in ISPF tables. You can save these ISPF tables in a PDS. After you have completed
your service definitions, you need to install these definitions into the WLM couple data set
(CDS) before you can activate it. Refer to Figure 4-4.

Figure 4-4 WLM ISPF application

Note that the WLM ISPF application uses the data set name userid.WLM.SAVExx (where
userid is the TSO user ID accessing the application and xx is any two-digit number). WLM
ISPF allocates this data set for recovery purposes. WLM deletes this data set when the ISPF
application is ended. Do not use this naming convention to prevent conflict with WLM.

Security access
You can control access to the WLM ISPF application by defining the facility class
MVSADMIN.WLM.POLICY in RACF. When a user tries to access the WLM ISPF application,
it checks whether that user has access to this facility class. You must determine who needs
access to it. Access levels can be either:

� READ

Recommended access for system programmers, system operators, help desk support
personnel, and production control staff. With READ access, the user can:

– Define, display, and modify a service definition stored in an MVS partitioned data set.
– Extract a service definition from a WLM couple data set.
– Display the service definition.
– Print the service definition.

� UPDATE

Recommended access for the service administrator, some system programmers, and
possibly the performance administrator. With UPDATE access, the user can:

– Perform all the functions available for READ access.
– Allocate a WLM couple data set to the sysplex (use the SETXCF command).
– Install a service definition to a WLM couple data set.
– Activate a service policy.

XCF
WLM

Couple
Data Set

ISPF
Table

Policy

userid.WLM.DEF
Chapter 4. Implementation and workload classifications 119

You can use RDEFINE to add a profile to the RACF database. Then, use PERMIT to permit or
deny access to the RACF profile. Do not forget to issue the SETROPTS REFRESH command
after the PERMIT command to refresh the RACF database and activate the changes that you
have made.

Example 4-1 RACF definition sample

Example of using RDEFINE to define the facility class for WLM ISPF application:
RDEFINE FACILITY MVSADMIN.WLM.POLICY UACC(NONE) NOTIFY(user)
Where:
user Indicates the user that should be notified of unauthorized access
attempts to the database.

Example of using PERMIT to allow access to the WLM ISPF application:
PERMIT MVSADMIN.WLM.POLICY CLASS(FACILITY) ID(user) ACCESS(READ)
PERMIT MVSADMIN.WLM.POLICY CLASS(FACILITY) ID(user) ACCESS(UPDATE)

Where:
user Indicates the user or user group that needs access to the WLM ISPF
application.
ACCESS Indicates the type of access, either READ or UPDATE

Starting your WLM ISPF application
To start the WLM application, use the TSO/E REXX exec IWMARIN0. The exec concatenates
(via LIBDEF and ALTLIB) the following libraries necessary to run the application (Figure 4-5).

Figure 4-5 WLM ISPF libraries

The exec also allocates some MVS partitioned data sets for the service definition using TSO
ALLOCATE, and then invokes the WLM panels. If you have different data set naming
conventions for your IPCS/WLM libraries, or if you use storage-managed data sets, you
should use the WLM application exits IWMAREX1 and IWMAREX2. For more information
about how to code the exits, see Appendix A, “Customizing the WLM ISPF Application” in
z/OS MVS Planning: Workload Management, SA22-7602.

To start the application, specify:

ex ’SYS1.SBLSCLI0(IWMARIN0)’

To add the WLM application to the ISPF primary panel, add the WLM option to display as part
of the menu, then specify:

WLM,’CMD(%IWMARIN0) NEWAPPL(IWMP) PASSLIB’

For more information about IWMARIN0 and for examples about how to start the application
specifying the WLM exits, see Appendix A, “Customizing the WLM ISPF Application” in z/OS
MVS Planning: Workload Management, SA22-7602.

Library Name Description

SYS1.SBLSCLI0 Application REXX code

SYS1.SBLSKEL0 Application skeletons

SYS1.SBLSPNL0 Application panels

SYS1.SBLSTBL0 Application keylists and commands

SYS1.SBLSMSG0 Application messages
120 System Programmer’s Guide to: Workload Manager

4.2.3 WLM couple data set management
In this section, we discuss WLM couple data set management.

Allocating the WLM couple data set
You need to define a WLM couple data set for storing the service definition information. If you
are running a sysplex with mixed release levels, you should format the WLM couple data set
from the highest level system. This allows you to use the current level of the WLM ISPF
application. You can continue to use the downlevel WLM ISPF application on downlevel
systems provided that you do not attempt to exploit the new function.

There is no need to allocate the WLM CDS in high performance DASD devices, because
there is not much I/O to this data set. The only time this data set is accessed is during IPL and
when the service definition is installed into or extracted from the WLM CDS.

To allocate the WLM couple data set, you can either use the facility provided in the WLM ISPF
application, or you can run an XCF utility in batch. For each case, you need to estimate how
many workload management objects you are storing on the WLM couple data set. You must
provide an approximate number of:

� Policies in your service definition
� Workloads in your service definition
� Service classes in your service definition

The values that you define are converted to space requirements for the WLM couple data set
that is allocated. The total space is not strictly partitioned according to these values. For most
of these values, you can consider the total space to be one large pool.

To use the WLM ISPF application to allocate the WLM Couple data set (CDS), go to the
Utilities option on the menu bar (PF10). See Figure 4-6.

Figure 4-6 WLM ISPF Utilities option (PF10)

 File Utilities Notes Options Help
 ----- EsssN ----------------
 Funct e 1. Install definition e Appl LEVEL013
 Comma e 2. Extract definition e _________________
 e 3. Activate service policy e
 Defin e 4. Allocate couple data set e
 e 5. Allocate couple data set using CDS values e
 Defin e 6. Validate definition e
 Descr DsssM r

 Select one of the
 following options. ___ 1. Policies
 2. Workloads
 3. Resource Groups
 4. Service Classes
 5. Classification Groups
 6. Classification Rules
 7. Report Classes
 8. Service Coefficients/Options
 9. Application Environments
 10. Scheduling Environments

Chapter 4. Implementation and workload classifications 121

You can also use the XCF utility to allocate the WLM CDS. You can use the JCL provided in
the IWMFTCDS member of SYS1.SAMPLIB. See Figure 4-7.

Figure 4-7 Sample JCL to allocate WLM CDS

For details about allocating your WLM CDS, refer to z/OS MVS Planning: Workload
Management, SA22-7602.

Managing your WLM CDS
In the future, you might need to reallocate your WLM CDS, because the current size is
already too small or maybe you are upgrading to a new z/OS version and you need to migrate
your old CDS to the new z/OS CDS.

You can use a series of SETXCF commands to switch the current primary and alternate CDS
to the newly allocated CDS. After you do this, all the systems now use the newly allocated
CDS. See Example 4-2.

Example 4-2 Example of making reallocated couple data sets available

1. Allocate two new couple data sets as described in previous section.
For this example, it is assumed you want a primary and an alternate couple data
set, and that the names of the new data sets are SYS1.WLMP residing on volume
SYS001 and SYS1.WLMA residing on volume SYS002.

2. Make SYS1.WLMP the alternate using the command:
SETXCF COUPLE,TYPE=WLM,ACOUPLE=(SYS1.WLMP,SYS001)
As part of this processing, SETXCF copies the contents of the current primary WLM
couple data set to SYS1.WLMP, which now is the new alternate.

3. Switch SYS1.WLMP to primary using the command:
SETXCF COUPLE,TYPE=WLM,PSWITCH

4. Now make SYS1.WLMA the new alternate using the command:
SETXCF COUPLE,TYPE=WLM,ACOUPLE=(SYS1.WLMA,SYS002)
As in Step 1 above, this causes the contents of the new primary WLM couple data
set SYS1.WLMP to be copied to the new alternate SYS1.WLMA.

If you are making newly formatted WLM couple data sets available to the sysplex, you can
continue to use your old WLM ISPF application to modify, install, and activate your service

//FMTCDS JOB MSGLEVEL=(1,1)
//STEP1 EXEC PGM=IXCL1DSU
//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 DEFINEDS SYSPLEX(PLEX1)
 DSN(SYS1.WLMCDS01) VOLSER(TEMPAK)
 MAXSYSTEM(32)
 CATALOG
 DATA TYPE(WLM)
 ITEM NAME(POLICY) NUMBER(10)
 ITEM NAME(WORKLOAD) NUMBER(35)
 ITEM NAME(SRVCLASS) NUMBER(30)
 ITEM NAME(APPLENV) NUMBER(100)
 ITEM NAME(SCHENV) NUMBER(100)
/*
122 System Programmer’s Guide to: Workload Manager

definition (as long as you do not exploit new functions), or you can switch to the new WLM
ISPF application that came with your new version of z/OS.

4.2.4 Specifying your service definition
This section discusses how to set up your service definition. A service definition represents
the business goal and performance objectives that WLM uses to manage the workload of the
system. It consists of one or more service policies, workloads, service classes, and
classification rules. Optionally, it might also include Resource Groups, report classes,
scheduling, and Application Environments.

Before you actually start defining the different constructs used in the WLM policy, it is
important to plan first the naming convention that you want to use. There is no such thing as a
best practice naming convention. It is up to your installation to decide what is right and what
makes sense to you. We are not here to tell you what is the “right” way to do this, but rather to
get you to start thinking about this. Keep this in mind that your naming convention should help
you identify different elements, such as service classes, Resource Group, resource classes,
classification group, workload, and so forth. It is a good idea to get a group of people together
to discuss this.

In goal mode, the names that you choose will be viewed by more people now. It is no longer
hidden in the IPS/ICS parmlib. Always give meaningful names, but also be sensitive to your
clients. If you are running a service bureau, some of your client's executives might not be too
happy to see that their job is always running on a service class called BATSLOW. If you like to
use your goals as part of the name, for example BATVEL30, this might be a meaningful name,
but remember that every time you change your goals, you also need to change your name.

Figure 4-8 on page 124 provides a sample naming convention to get you started.
Chapter 4. Implementation and workload classifications 123

Figure 4-8 Sample naming convention for the different WLM constructs

After you decide on your installation naming convention, you need to plan for your service
definition. You need to understand your business goals. Are there any current service level
agreements with your users? Which applications are the business critical applications? What
are their relative importances to one another? What is the current performance of my system
and sysplex?

When you start the WLM ISPF application, the first panel asks you to choose your service
definition. You can either create a new one, load the service definition from an existing PDS,
or extract the service definition from the current WLM CDS. See Figure 4-9 on page 125.

TYPE
NAMING

CONVENTION
DESCRIPTION

Service
Definition

SVDEFxx The service definition name starts with SVDEF and has a suffix xx, where xx
can be any two characters. For the definition data set name, you can give a
meaningful name by relating it to the sysplex name, date and service
definition name. The name could be something like
"WLM.PLEX01.SVDEF01.D041505"

Policy Name PLBASExx and
PLOVRxx

The base policy names start with PLBASE and a suffix xx. Policy Override
names start with PLOVR with a suffix xx. Suffix xx can be any two
characters. Example PLBASE01, PLOVR01, PLOVR02, PLOVR03

Workload WKxxxxyy Workload names start with WK, then the next 4 characters, xxxx, describes
the workload and last 2 character, yy, can be any suffix characters. Example:
WKCICS01, WKDB2P01,WKDB2T01,WKDB2T02

Service Class SCxxxyyy Service class names start with SC. Then 3 characters, xxx, relates it to the
susbystem type or application system. The last 3 character ,yyy, relates it to
the importance, this could be HI, MED or LOW. Example : SCCICHI,
SCDB2LOW, SCDB2HI, SCATMHI

Resource Group RGxxxxxx Resource group names start with RG. The next 6 character could be anything
that describe this resource group. If you are a service provider, you could put
like the client name where in this RG would be used. You could also relate
this to a subsystem or application. Example : RGBNKABC, RGCICCAP,
RG_LIMIT, RG_MIN

Report Class RCxxxxxx Report Class names start with RC. The next 6 characters can be used to
describe the type of report. Example RCCICS, RCTCPIP, RCTSO

Classification
Group

xxxGyyyy The first 2-3 characters (xxx) of the classification group name represents the
work qualifier used for this classification group. Then followed by the letter G
to denote group. The last 4 characters (yyyy) can be any meaningful
description for this group. Example : UIGDEPT, TNGCICSP, NETGDB2
124 System Programmer’s Guide to: Workload Manager

Figure 4-9 WLM ISPF application: Choosing your Service Definition

Choose option 3 if you want to create a new definition. After you press Enter, you go to the
main Definition Menu (Figure 4-10).

Figure 4-10 WLM Definition Menu

You need to give your service definition a name and a short description. From this menu, you
can start defining the policy, service classes, classification rules, workloads, and so forth. On

 File Help
 --

 Command ===> __

 EsssN
 e Choose Service Definition e
 e e
 e Select one of the following options. e
 e 3 1. Read saved definition e
 e 2. Extract definition from WLM e
 e couple data set e
 e 3. Create new definition e
 e e
 e F1=Help F2=Split F5=KeysHelp e
 e F9=Swap F12=Cancel e
 DsssM
 ENTER to continue

 File Utilities Notes Options Help
 --
 Functionality LEVEL001 Definition Menu WLM Appl LEVEL013
 Command ===> __

 Definition data set . . : none

 Definition name ________ (Required)
 Description ________________________________

 Select one of the
 following options. ___ 1. Policies
 2. Workloads
 3. Resource Groups
 4. Service Classes
 5. Classification Groups
 6. Classification Rules
 7. Report Classes
 8. Service Coefficients/Options
 9. Application Environments
 10. Scheduling Environments

Chapter 4. Implementation and workload classifications 125

the menu bar, you can use the Notes options to document the changes made to your service
definition. There is a notepad where you can edit and track your changes to the definitions.

You can work with one service definition at a time. If you have multiple service definitions, you
can save each one in a separate PDS. To use the service definition, it needs to be installed
into the WLM CDS, and the service policy that is defined within the service definition needs to
be activated. can be used by WLM, it has to install onto the WLM CDS and the service policy
within the service definition activated.

4.2.5 Service policy definition
A service policy is a named collection of overrides to the goals set in the base service
definition. You can only have one active policy at any one time. A policy applies to all the work
running in a sysplex. At certain times, there might be a need to change performance goals.
For example, your prime shift goals might not be the same as during off-shift. In this case, you
can set up another policy that is more appropriate to your off-shift hours.

When you create your service definition, you might choose to define one empty default policy
with no overrides at all. Next, create your workloads and service classes. Then, determine
how and when your service classes can have different goals at different times. Define
additional policies with the appropriate overrides for these time periods. When you activate
your override policy, the overrides are merged with the service class and Resource Group
specifications in the service definition. Figure 4-11 shows the WLM ISPF panel to define your
policy.

Figure 4-11 WLM ISPF service policy definition

4.2.6 Workload specification
Workload is a way to group work that is meaningful for the installation to monitor. Logically, a
workload is a group of one or more service classes. You associate a service class to a
workload by using the WLM ISPF service class menu. Figure 4-12 on page 127 shows the
Create a Workload panel.

 Service-Policy Notes Options Help
 --
 Create a Service Policy
 Command ===> __

 Enter or change the following information:

 Service Policy Name ________ (Required)
 Description ________________________________

126 System Programmer’s Guide to: Workload Manager

Figure 4-12 Create a Workload

You only use a workload to group service classes for reporting purposes. It does not affect
workload management. You can arrange workloads by subsystem, such as CICS or IMS, by
major application, such as Production, Batch, or Office, or by line of business, such as ATM,
Inventory, or department.

4.2.7 Resource Group specification
A Resource Group defines the processor capacity available to groups of service classes in the
sysplex. Resource Groups are not required; however, they are used to modify normal WLM
management. You can use a Resource Group to:

� Limit the amount of processing capacity available to one or more service classes.

� Set a minimum processing capacity for one or more service classes in the event that the
work does not achieve its goals.

You can specify the minimum and maximum capacity of a Resource Group. The minimum
and maximum apply to all systems in the sysplex. You can assign only one Resource Group
to a service class, but you can have multiple service classes associated with one Resource
Group. You can define up to 32 Resource Groups per service definition.

Figure 4-13 shows the Create a Resource Group panel.

Figure 4-13 Create a Resource Group

 Workload Notes Options Help
 --
 Create a Workload
 Command ===> __

 Enter or change the following information:

 Workload Name ________ (Required)
 Description ________________________________

 Resource-Group Notes Options Help
--
 Create a Resource Group
Command ===> __

Enter or change the following information:

Resource Group Name ________ (required)
Description ________________________________

Define Capacity:
__ 1. In Service Units (Sysplex Scope)
 2. As Percentage of the LPAR share (System Scope)
 3. As a Number of CPs times 100 (System Scope)
Minimum Capacity ______
Maximum Capacity ______

Chapter 4. Implementation and workload classifications 127

For more detail about Resource Group parameters, see 3.1.1, “Resource Groups” on
page 76.

4.2.8 Working with service classes
A service class is a named group of work with similar performance goals, resource
requirements, or business importance. In the service class, you assign the goals of the work
and their relative importance. You can choose from four types of goals:

� Average response time
� Response time with percentile
� Execution velocity
� Discretionary

After you select the type of goal that is most appropriate to the work, specify a goal, an
importance, and a duration for a performance period. Performance periods are available for
work that has variable resource requirements and for which your goals change as the work
uses more resources. Duration is the amount of service units that a period should consume
before going on to the next goal. You can specify up to eight performance periods. Multiple
performance periods are allowed, except for CICS subsystems and IMS subsystems.

In the service class panel, you relate the service class to a particular workload and Resource
Group. To associate an incoming work with a particular service class, you must set up your
classification rules. Make sure you create your service classes before creating classification
rules. You can create your service classes using the main definition panel, option 4. This is a
relatively minor task (compared to the planning and preparation).

Figure 4-14 shows the Create a Service Class panel. A pop-up window appears when you
choose the Insert New Period (I) or Edit Period (E) action code. Refer to Figure 4-15 on
page 129.

Figure 4-14 Create a Service Class

 Service-Class Notes Options Help
 --
 Create a Service Class Row 1 to 1 of 1
 Command ===> __

 Service Class Name ________ (Required)
 Description ________________________________
 Workload Name ________ (name or ?)
 Base Resource Group ________ (name or ?)
 Cpu Critical NO (YES or NO)

 Specify BASE GOAL information. Action Codes: I=Insert new period,
 E=Edit period, D=Delete period.

 ---Period--- ---------------------Goal---------------------
 Action # Duration Imp. Description
 __
 ******************************* Bottom of data ********************************

128 System Programmer’s Guide to: Workload Manager

Figure 4-15 Setting your performance goals

After you complete the definition of the various service classes and their goals, you can now
proceed to classify your workload to service classes.

4.2.9 Classification rules
WLM uses classification rules to map work coming into the system to specific service class
and report class. This classification is based on work qualifiers. A work qualifier identifies a
work request to the system. The first qualifier is the subsystem type that receives the work
request. When you define the rules, start with the service classes that you have defined, and
look at the type of work that they represent. Determine which subsystem types process the
work in each service class. Table 4-1 shows the IBM-supplied subsystem type and
Figure 4-16 on page 131 shows the non-IBM subsystem type.

Table 4-1 Subsystem type supplied by IBM

 Service-Class Notes Options Help
 - EsssN ----------------------------
 e Choose a goal type for period 1 e ss Row 1 to 1 of 1
 C e e _____________________________
 e e
 S e __ 1. Average response time e ired)
 D e 2. Response time with percentile e e class
 W e 3. Execution velocity e or ?)
 B e 4. Discretionary e or ?)
 C e e or NO)
 e F1=Help F2=Split F5=KeysHelp e
 S e F9=Swap F12=Cancel e I=Insert new period,
 E DsssM

 ---Period--- ---------------------Goal---------------------
 Action # Duration Imp. Description
 i

Subsystem
type

Work description Enclave,
address space,
or LPAR

ASCH The work requests include all APPC transaction programs
scheduled by the IBM-supplied APPC/MVS transaction
scheduler.

Address space

CB The work requests include all Component Broker client
object method requests.

Enclave

CICS The work requests include all transactions processed by
CICS Version 4 and above.

See footnote a

DB2 The work requests include only the queries that DB2 has
created by splitting a single, larger query and distributed to
remote systems in a sysplex. The local piece of a split query,
and any other DB2 work, is classified according to the
subsystem type of the originator of the request (for example,
DDF, TSO, or JES).

Enclave

DDF The work requests include all DB2 distributed data facility
(DB2 Version 4 and above) work requests.

Enclave
Chapter 4. Implementation and workload classifications 129

EWLM Allows you to assign EWLM transaction and service classes
by name to WLM service classes.

Enclave

IMS The work requests include all messages processed by IMS
Version 5 and above.

See footnote a

IWEB The work requests include all requests from the Web that are
serviced by the Internet Connection Server (ICS), Domino®
Go Webserver, or IBM HTTP Server for z/OS. These
requests also include those handled by the Secure Sockets
Layer (SSL). This also includes transactions handled by the
Fast Response Cache Accelerator.

Enclave

JES The work requests include all jobs that JES2 or JES3
initiates.

Address space

LSFM The work requests include all work from LAN Server for MVS. Enclave

MQ The work requests include MQSeries Workflow work, such
as new client server requests, activity executions, activity
responses, and subprocess requests.

Enclave

NETV The work requests include NetView network management
subtasks and system automation (SA) subtasks created by
Tivoli® NetView for z/OS.

Enclave

OMVS The work requests include work processed in z/OS UNIX
System Services forked children address spaces. (Work that
comes from an enclave is managed to the goals of the
originating subsystem.)

Address space

SOM The work requests include all SOM client object class binding
requests.

Enclave

STC The work requests include all work initiated by the START
and MOUNT commands. STC also includes system
component address spaces, such as the TRACE and
PC/AUTH address spaces.

Address space

TSO The work requests include all commands issued from
foreground TSO sessions.

Address space

SYSH Identifies non-z/OS partitions (that is, the Linux partition) in
the LPAR cluster, which need to be managed by WLM
according to business goals set for the partition.

LPAR

a. CICS and IMS do not use enclaves, but use a different set of WLM services to provide trans-
action management. CICS and IMS transactions can be assigned only response time goals (ei-
ther percentile or average) within single period service classes. You can choose whether WLM
will manage the CICS and IMS regions according to the response time goals of the transaction
or according to the goals of the service class assigned to the region.

Subsystem
type

Work description Enclave,
address space,
or LPAR
130 System Programmer’s Guide to: Workload Manager

Figure 4-16 Non-IBM subsystem type

Then, understand which work qualifiers your installation can use for setting up the rules. Work
qualifiers are used to identify the incoming work request. Your installation might follow certain
naming conventions for these qualifiers. These naming conventions can help you to filter work
into service classes. Also, understand which work qualifiers are available for each subsystem
type. You can then decide which qualifiers you can use for each service class. Table 4-2 on
page 132 shows the qualifiers supported by each IBM-defined subsystem type.

Subsystem Work Description with Allowable Work Qualifiers
For More
Information,
See:

SAP R/3 Each SAP R/3 work process has an associated type, corresponding to the
allowable transaction name qualifiers listed below. The ICLI server maps each
work process type to one of eight pre-existing enclaves, each with its own
performance goal. These enclaves are started at ICLI server startup time, and are
deleted when the ICLI server is shut down. Therefore, only velocity goals are
appropriate, with single periods.

Allowable Work Qualifiers:

 Transaction Name —must be one of:
- DIALOG
- BATCH
- UPDATE
- UPDATE2
- GENERIC
- SPOOL
- ENQUEUE
- UNKNOWN

 Userid —the userid of the user who started the ICLI server

SAP R/3 on
DB2 for
OS/390:
Planning Guide
(SC33-7964)

OSDI Oracle release 8.1.7.3 and above now supports enclaves. You need to be sure
you are at the OSDI level of Oracle. Management of Oracle transactions can be
specified by defining a new subsystem named OSDI. Oracle Net has support for
a keyword parameter named ENCLAVE. You can specify ENCLAVE(SESS) or
ENCLAVE(CALL). The recommendation is to specify ENCLAVE(CALL) as
this classifies a transaction every time a request arrives from the client much like
DDF acts with THREADS(INACTIVE) and RELEASE(COMMIT). Multiple
periods and response time goals are appropriate for these types of transactions.
If you specify ENCLAVE(SESS), a single long running enclave will be created.
In this situation a single period velocity goal is appropriate.

Attribute Value
 SI OSDI subsystem name
 UI User ID from the client. For Oracle Applications this is
 the UID of the user running the application server on
 the middle-tier processor
 NET If SNA: client Network Name from VTAM
 If TCP: First eight characters of dotted IP address.
 (example, 100.024.)
 LU If SNA: The client LU name.
 If TCP: Last eight characters of dotted IP address.
 Note that the IP address requires leading zeros to be
 specified.
 CT Protocol from connect, TCP or LU6.2
 SPM Position 1 to 8. Oracle Service Name for this
 connection. The service name is defined in the
 parameters used to initialize the Oracle ODSI
 subsystem.
 Position 9 to 89. TCP/IP hostname (left justified)

See Oracle
documentation
for more info.
Chapter 4. Implementation and workload classifications 131

Table 4-2 Qualifiers supported by each IBM-defined subsystem type

A
S
C
H

C
B

C
I
C
S

D
B
2

D
D
F

E
W
L
M

I
M
S

I
W
E
B

J
E
S

L
S
M
F

M
Q

N
E
T
V

O
M
V
S

S
O
M

S
T
C

T
S
O

S
Y
S
H

Accounting Information * * * * * *

Collection Name * * * *

Connection Type * *

Correlation Information * *

EWLM Service Class *

EWLM Transaction Class *

LU Name * * * * *

Netid * * *

Package Name * *

Perform * * * *

Plan Name * *

Priority * * * *

Procedure Name * *

Process Name * * *

Scheduling Environment
Name

* *

Subsystem Collection Name * * *

Subsystem Instance * * * * * * * * * *

Subsystem Parameter * * * * * *

Sysplex Name * * * * * * * * * * * * * * *

System Name * * * * *

Transaction Class/Job Class * * * * * * * *

Transaction Name/Job Name * * * * * * * * * * * *

Userid * * * * * * * * * * * * * *
132 System Programmer’s Guide to: Workload Manager

The following tables provide details about the work qualifiers that you can use to classify SAP
requests into the DB2 environment.

Table 4-3 WLM qualifiers for DB2 DDF classification for SAP requests

The following tables show how the SAP attributes map to DB2 Client Identifiers. (Table 4-4
applies to ABAP™ while Table 4-5 applies to SAP Java Workload.)

Table 4-4 ABAP attributes

Table 4-5 SAP Java workload attributes

To define your classification rules in the WLM ISPF application. Choose option 6 from the
Definition Menu. See Figure 4-17 on page 134.

DB2 client identifier IFI field WLM qualifier

Correlation ID QWHCCV CI

Accounting string suffix QMDASUFX AI (positions 56–143)

Primary authorization ID QWHCAID UI

Plan name QWHCPLAN PN

Transaction name QWHCEUTX PC

Workstation name QWHCEUWN SPM (positions 17–34)

Client user ID QWHCEUID SPM (positions 1–16)

SAP attribute DB2 client identifier Positions

SAP system ID (SAPSID) Correlation ID 1–3

Work process type Correlation ID 4–6

Work process number Correlation ID 7–9

Host name of application server Accounting string suffix 1–32

SAP system number
(SAPSYSTEM)

Accounting string suffix 33–34

Work process ID Accounting string suffix 35–44

Database connection name Accounting string suffix 45–74

User ID used to connect to DB2 Primary authorization ID All (1–8)

Plan name of SAP Plan name All (1–8)

SAP Java attribute DB2 client identifier Positions

SAP system ID (SAPSID) Primary authorization ID 4–6

Host name of application server Workstation name All (1–18)

Indicator for Java workload
(constant db2jcc)

Correlation ID 1–6
Chapter 4. Implementation and workload classifications 133

Figure 4-17 Definition Menu

You then need to choose the subsystem type for which you want to define the classification
rules. Figure 4-18 shows the panel for the Subsystem Type Selection List for Rules.

Figure 4-18 Subsystem Type Selection List for Rules

 File Utilities Notes Options Help
 --
 Functionality LEVEL011 Definition Menu WLM Appl LEVEL013
 Command ===> __

 Definition data set . . : 'ONG.WLM.RSDNCY01'

 Definition name rsdncy01 (Required)
 Description wlm residency Service Definition

 Select one of the
 following options. _6_ 1. Policies
 2. Workloads
 3. Resource Groups
 4. Service Classes
 5. Classification Groups
 6. Classification Rules
 7. Report Classes
 8. Service Coefficients/Options
 9. Application Environments
 10. Scheduling Environments

 Subsystem-Type View Notes Options Help
 --
 Subsystem Type Selection List for Rules Row 1 to 14 of 14
 Command ===> __

 Action Codes: 1=Create, 2=Copy, 3=Modify, 4=Browse, 5=Print, 6=Delete,
 /=Menu Bar

 ------Class-------
 Action Type Description Service Report
 __ ASCH Use Modify to enter YOUR rules
 __ CB Use Modify to enter YOUR rules
 3_ CICS CICS CLASSIFICATION RULES CICSALL
 __ DB2 Use Modify to enter YOUR rules
 __ DDF Use Modify to enter YOUR rules
 __ EWLM EWLM Pseudo Subsystem ETC/ESC EWLM REWLMDEF
 __ IMS Use Modify to enter YOUR rules
 __ IWEB Use Modify to enter YOUR rules
 __ JES Use Modify to enter YOUR rules
 __ LSFM Use Modify to enter YOUR rules
 __ MQ Use Modify to enter YOUR rules
 __ OMVS Use Modify to enter YOUR rules
 __ SOM Use Modify to enter YOUR rules
 __ STC Use Modify to enter YOUR rules
 __ TSO Use Modify to enter YOUR rules
 ******************************* Bottom of data ********************************

134 System Programmer’s Guide to: Workload Manager

After you have chosen the subsystem type that you want to classify, you need to enter the
classification rules. Figure 4-19 is an example of a classification rule for the CICS subsystem.
In this example, there are two classification rules with level 1 qualifiers: Subsystem instance
CICSPRD* and CICSFRX. There is a level 2 qualifier with transaction name PR* under
CICSPRD*. Wildcard notation was used for this work qualifier. The PR* qualifier applies only
to transactions associated with the level 1 qualifier of CICSPRD*.

Figure 4-19 Modify Rules for the Subsystem Type

If a work request comes in from a CICS VTAM applid other than CICSPRD* or CICSFRX,
then it is assigned the CICSALL default service class. If a work request comes in from
CICSPRD1, and the transaction name is PR01, then this classifies as CICSHIGH. If the
transaction coming from CICSPRD1 has a name that starts with anything other than PR, then
it is classified as CICSMED. If another work request comes in from CICSFRX, then it is
assigned the CICSMED service class.

The order of the nesting and the order of the level 1 qualifiers determine the hierarchy of the
classification rules. Keep in mind that the system sequentially checks for a match against
each level one rule. When it finds a match, it continues just in that family through the level two
rules for the first match. Similarly, if a match is found at any given level, then its sub-rules are
searched for further qualifier matches. The last matching rule is the one that determines the
service class and report class to be assigned.

If you have more than five instances of a work qualifier that you need to classify under one
subsystem type, you can use the classification group to make it simpler and more efficient. A
classification group is a collection of the same work qualifier. A classification group of more
than five members is quicker to check than single instances in the classification rules. You can
create a classification group by choosing option 5 in the Definition Menu (Figure 4-10 on
page 125). You receive a pop-up panel requiring that you choose a work qualifier that you
want to group. See Figure 4-20 on page 136.

 Subsystem-Type Xref Notes Options Help
 --
 Modify Rules for the Subsystem Type Row 1 to 4 of 4
 Command ===> __ SCROLL ===> PAGE

 Subsystem Type . : CICS Fold qualifier names? Y (Y or N)
 Description . . . CICS CLASSIFICATION RULES

 Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 --------Qualifier-------- -------Class--------
 Action Type Name Start Service Report
 DEFAULTS: CICSALL ________
 ____ 1 ____ ________ ___ ________ ________
 ____ 1 SI CICSPRD* ___ CICSMED ________
 ____ 2 TN PR* ___ CICSHIGH ________
 ____ 1 SI CICSFRX ___ CICSMED ________
****************************** BOTTOM OF DATA ******************************

Chapter 4. Implementation and workload classifications 135

Figure 4-20 Classification Group Menu

Figure 4-21 on page 137 is an example of a STCGRP that we used to group STC.

 File Utilities Notes Options Help
 --
 Functionality LEVEL001 Definition Menu WLM Appl LEVEL013
 Command ===> __

 Definition data set . . : 'ONG.WLM.RSDNCY01'

 Definition name rsdncy01 (Required)
 Description wlm residency service definition

 Select one of the
 following options. 5 1. Policies
 EsssN
 e Classification Group Menu e
 e e
 e e
 e Select one of the following options. e
 e __ 1. Connection Type Groups e
 e 2. LU Name Groups e
 e 3. Net ID Groups e
 e 4. Package Name Groups e
 e 5. Plan Name Groups e
 e 6. Subsystem Instance Groups e
 e 7. System Name Groups e
 e 8. Transaction Class Groups e
 e 9. Transaction Name Groups e
 e 10. Userid Groups e
 e 11. Perform Groups e
 e F1=Help F2=Split F5=KeysHelp e
 e F9=Swap F12=Cancel e
 DsssM

136 System Programmer’s Guide to: Workload Manager

Figure 4-21 Create a Group

After you define your group, go to the classification rules for your subsystem type. Use the
group type and group name on the qualifier type and name fields. The group types are
specified by adding G to the qualifier type abbreviation. For example, a transaction name
group is indicated as TNG. Figure 4-22 shows the panel for modifying rules using classification
groups.

Figure 4-22 Modify Rules for the Subsystem Type using classification group

 Group Notes Options Help
 --
 Create a Group Row 1 to 6 of 6
 Command ===> __

 Enter or change the following information:

 Qualifier type : Transaction Name
 Group name STCGRP (required)
 Description started task classification grp
 Fold qualifier names? Y (Y or N)

 Qualifier Name Description
 DFRMM You can put your description
 DFHSM here.___________________________
 OAM ________________________________
 TWS ________________________________
 UCC7 ________________________________
 NDM_____ ________________________________
 ******************************* Bottom of data ********************************

 Subsystem-Type Xref Notes Options Help
 --
 Modify Rules for the Subsystem Type Row 1 to 1 of 1
 Command ===> __ SCROLL ===> PAGE

 Subsystem Type . : STC Fold qualifier names? Y (Y or N)
 Description . . . STC CLASSIFICATION RULES

 Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 --------Qualifier-------- -------Class--------
 Action Type Name Start Service Report
 DEFAULTS: STCLOW ________
 ____ 1 TNG STCGRP ___ STCMED ________
****************************** BOTTOM OF DATA ******************************

Note: For a detailed description and samples about how to classify DB2 Stored
Procedures, refer to DB2 for z/OS Stored Procedures: Through the Call and Beyond,
SG24-7083.
Chapter 4. Implementation and workload classifications 137

4.2.10 Service definition coefficient
The amount of system resources that an address space or enclave consumes is measured in
service units. Service units are calculated based on the CPU, SRB, I/O, and storage (MSO)
service that an address space consumes.

Service units are the basis for period switching within a service class that has multiple
periods. The duration of a service class period is specified in terms of service units. When an
address space or enclave running in the service class period has consumed the amount of
service specified by the duration, workload management moves it to the next period. The
work is managed to the goal and importance of the new period.

Because not all kinds of service are equal in every installation, you can assign additional
weight to one kind of service over another. This weight is called a service coefficient.

With the increased size in processor capability in our processors today, the default values for
these coefficients have become inflated. Processors can consume much higher amounts of
service, and as a result, service unit consumption numbers are very high. These high
numbers can cause problems if they reach the point where they wrap in the SMF fields. If they
wrap, you can see abnormally large transaction counts, and last period work might be
restarted in the first period. It is possible for you to make them smaller, yet still maintain the
same relationship between the coefficient values. Consider changing your definitions to these
values:

CPU 1
SRB 1
IOC 0.5
MSO 0

If you decide to change the coefficients, you must recalculate your durations and accounting
procedures.

To set your service definition coefficient, choose option 8 on the Definition Menu panel (see
Figure 4-10 on page 125). This brings you to the Service Coefficient/Service Definition
Options panel. See Figure 4-23 on page 139.

Tip: If you want to gather storage service information by service class, but do not want it
affecting your durations or accounting procedures, use an MSO coefficient of 0.0001. This
results in very low MSO service unit numbers, but still allows you to obtain storage service
information through RMF.
138 System Programmer’s Guide to: Workload Manager

Figure 4-23 Service Coefficient/Service Definition Options

4.2.11 Report class
WLM allows you to specify report classes to report on a subset of transactions running in a
single service class (homogeneous report) but also to combine transactions running in
different service classes within one report class (heterogeneous report). Heterogeneous
report classes can cause incorrect performance data, because the data collected is based on
different goals, importance, or duration.

To create a report class, you can either:

� Select option 7 from the main Definition Menu. See Figure 4-24.

� Use the Modify Rules for the Subsystem Type panel to specify the report class. When you
specify a new report class, a pop-up panel prompts you enter the report class description.
Figure 4-25 on page 140 shows an example of specifying a report class on the Modify
Rules for Subsystem type panel. The name of the report class is CICSRPT1.

You can have up to a maximum of 999 report classes.

Figure 4-24 Create a Report Class using option 7 of the Definition Menu

 Coefficients/Options Notes Options Help
 --
 Service Coefficient/Service Definition Options
 Command ===> __

 Enter or change the Service Coefficients:

 CPU 1.0 (0.0-99.9)
 IOC 0.5 (0.0-99.9)
 MSO 0.0000 (0.0000-99.9999)
 SRB 1.0 (0.0-99.9)

 Enter or change the service definition options:

 I/O Priority management NO (Yes or No)
 Dynamic alias management NO (Yes or No)

 Report-Class Notes Options Help
 --
 Create a Report Class
 Command ===> __

 Enter or change the following information:

 Report Class name ________ (Required)
 Description ________________________________

Chapter 4. Implementation and workload classifications 139

Figure 4-25 Create a Report Class using the Modify Rules for the Subsystem Type panel

4.2.12 Application Environment
An Application Environment is a group of application functions requested by a client to be
executed in server address spaces. When incoming work associated with an Application
Environment is received, WLM can dynamically start the server address space to handle the
work request. It dynamically manages the number of server address spaces depending on
the performance objectives.

Currently, the IBM-supplied work managers that use Application Environments are:

� DB2 (subsystem type DB2)
� SOMobjects® (subsystem type SOM)
� Component Broker (subsystem CB)
� Internet Connection Server, IBM HTTP Server for OS/390 (subsystem type IWEB)
� MQSeries Workflow (subsystem type MQ)

 Subsystem-Type Xref Notes Options Help
 --
 Modify Rules for the Subsystem Type Row 1 to 3 of 3
 Command ===> __ SCROLL ===> PAGE

 Subsystem Type . : CICS Fold qualifier names? Y (Y or N)
 Description . . . CICS CLASSIFICATION RULES

 Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 --------Qualifier-------- -------Class--------
 Action Type Name Start Service Report
 DEFAULTS: CICSALL ________
 ____ 1 SI CICSPRD* ___ CICSMED ________
 ____ 2 TN PR* ___ CICSHIGH CICSRPT1
 ____ 1 SI CICSFRX ___ CICSMED ________
****************************** BOTTOM OF DATA ******************************

 F1=Help F2=Split F3=Exit F4=Return F7=Up F8=Down F9=Swap
 F10=Left F11=Right F12=Cancel

EsssN
e Create a Report Class e
e e
e An undefined report class was specified. e
e e
e Press ENTER to define the class, or cancel to quit. e
e e
e Report Class name : CICSRPT1 e
e Description ________________________________ e
e F1=Help F2=Split F5=KeysHelp F9=Swap e
e F12=Cancel e
DsssM
140 System Programmer’s Guide to: Workload Manager

To define an Application Environment, you need to specify:

� Application Environment name
� Subsystem Type associated with the Application Environment
� JCL Procedure Name to start the server address space
� Start Parameters to use with the JCL procedures
� The limitation, if there is one, on starting the server address spaces

Figure 4-26 shows an example of a DB2 Application Environment.

Figure 4-26 Application Environment definition

4.2.13 Scheduling environment
A Scheduling environment is a list of resources along with their required states. WLM uses a
scheduling environment to identify which systems in a sysplex can handle the work that is
requested. You define the resources required and their corresponding states in the WLM
service definition. If a system has the necessary match for the resource required, then work
will be allowed to execute in that system.

To implement a scheduling environment, you need to:

1. Create at least one scheduling environment in your WLM service definition. Define the
resource names and the required state (on or off) for those resources.

2. For each system in the sysplex, you must set the state of the resource. Use
F WLM,RESOURCE=resource_name,setting to set the resource state.

3. Associate your incoming work with a particular scheduling environment. Currently, only
JES2, JES3, and Intelligent Data Miner can use the scheduling environment. Check with
your subsystem documentation to see if your subsystem can use a scheduling
environment.

Figure 4-27 on page 142 shows a sample scheduling environment with its resources.

 Application-Environment Notes Options Help
 --
 Modify an Application Environment
 Command ===> __

 Application Environment Name . : DB8CWLM1
 Description SP for DB2 DB8C
 Subsystem Type DB2
 Procedure Name DB8CWLM1
 Start Parameters DB2SSN=&IWMSSNM,APPLENV=DB8CWLM1
 __

 Limit on starting server address spaces for a subsystem instance:
 1 1. No limit
 2. Single address space per system
 3. Single address space per sysplex

Chapter 4. Implementation and workload classifications 141

Figure 4-27 Scheduling environment

4.2.14 Policy overrides
Your business needs might require that you have different performance goals at different
times. In order to do this, you can define a policy that overrides your base policy. You can
change these values using policy overrides:

� Service class goals
� Service class CPU protection
� Service class Resource Group assignment
� Resource Group attributes

You cannot change classification rules, an Application Environment, or a scheduling
environment through policy overrides. Also, you cannot add or delete service classes through
a policy override.

To define a policy override, choose option 1, Policies from the Definition Menu (Figure 4-10 on
page 125), and create your override policy. After you create this policy, use Action Codes 7
(Override Service Classes) or 8 (Override Resource Group) to select what you want to
override. If you choose option 7, a list of service classes displays. Option 8 displays a list of
Resource Groups. Figure 4-28 on page 143 is a sample Override Service Class Selection
List panel.

 Scheduling-Environments Notes Options Help
 --
 Modify A Scheduling Environment Row 1 to 3 of 3
 Command ===> __

 Scheduling Environment Name : DB2A
 Description DB2 SCHEDULING ENVIRONMENT

 Action Codes: A=Add D=Delete

 Required
 Action Resource Name State Resource Description
 __ DB2N ON AutoOps test DB2 system
 __ PRIMETIME OFF OFFICE HOURS 9AM TO 5PM
 __ SC54 ON SYSTEM SC54
 ******************************* Bottom of data ********************************

142 System Programmer’s Guide to: Workload Manager

Figure 4-28 Override Service Class Selection List

Chose Action code 3 to override the settings. After you complete the changes, you will see a
YES on the Overridden Goal column.

To activate your policy, you can either use the WLM ISPF application or use the operator
command VARY WLM.

For an example of using policy overrides for Resource Group, refer to 6.5, “Resource Group
usage” on page 210.

4.2.15 How to use policy overrides
Generally, a unique service policy definition fits all of the performance requirements of an
installation. There are situations where some modifications of the actual service policy are
necessary. Using override capability prevents you from having to reinstall a new service
definition by allowing you to apply changes to the running service policy.

In this section, we explain how to perform the override of the policy to dynamically add and
then remove a Resource Group and to modify the definitions of this Resource Group.

Adding and removing a Resource Group
Example 4-3 on page 144 shows the Resource Group OVRG that we want to add to the
BATMED service class.

 Override View Notes Options Help
 --
 Override Service Class Selection List Row 1 to 10 of 10
 Command ===> __

 Service Policy Name : OVERRIDE

 Action Codes: 3=Override Service Class, 4=Browse, 5=Print,
 6=Restore Base attributes, /=Menu Bar

 Service Overridden
 Action Class Goal Description
 __ BATCHSC YES batch Service Class
 __ CICSALL NO CICS CATCH ALL
 __ CICSHIGH NO CICS HIGH PRIORITY WORK
 __ CICSLOW NO CICS LOW PRIORITY WORK
 __ CICSMED NO CICS MEDIUM PRIORITY WORK
 __ OTHERS NO CATCH ALL SERVICE CLASS
 __ SCTHIGH NO stc high priority
 __ STCLOW NO stc low priority
 __ STCMED NO stc medium priority
 __ TSOSC NO TSO Service Class
 ******************************* Bottom of data ********************************

Chapter 4. Implementation and workload classifications 143

Example 4-3 Resource Group definition

 Resource-Group Xref Notes Options Help
--
 Modify a Resource Group
Command ===> __

Enter or change the following information:

Resource Group Name : OVRG
Description ITSO Resource Group override

Define Capacity:
1 1. In Service Units (Sysplex Scope)
 2. As Percentage of the LPAR share (System Scope)
 3. As a Number of CPs times 100 (System Scope)
Minimum Capacity ______
Maximum Capacity 10000

First, we create a new service policy, named OVERPOL, as described in Example 4-4.

Example 4-4 Service policy override creation

Service-Policy Notes Options Help
--
 Create a Service Policy
Command ===> __

Enter or change the following information:

Service Policy Name overpol (Required)
Description ITSO policy override____________

Then, as shown in Example 4-5, we use option 7 to specify that we want to override service
policy OVERPOL.

Example 4-5 Specifying override service class for a service policy

Service-Policy View Notes Options Help
--
 Service Policy Selection List Row 1 to 2 of 2
Command ===> __

Action Codes: 1=Create, 2=Copy, 3=Modify, 4=Browse, 5=Print, 6=Delete,
 7=Override Service Classes, 8=Override Resource Groups,
 /=Menu Bar
 ----Last Change-----
Action Name Description User Date
 7_ OVERPOL ITSO policy override CASSIER 2005/04/02
 __ WLMPOL Sample WLM policy CASSIER 2005/04/02

Example 4-6 on page 145 shows how to specify that service class BATMED is the target of
the override.
144 System Programmer’s Guide to: Workload Manager

Example 4-6 Specifying the Service Class to override

Override View Notes Options Help
--
 Override Service Class Selection List Row 1 to 18 of 40
Command ===> __

Service Policy Name : OVERPOL

Action Codes: 3=Override Service Class, 4=Browse, 5=Print,
 6=Restore Base attributes, /=Menu Bar

 Service Overridden
Action Class Goal Description
 __ ASCHDEF NO ASCH/APPC default
 __ ASCHHI NO APPC high priority
 __ ASCHLO NO APPC low priority
 __ BATHI NO high priority batch
 __ BATLO NO low priority batch
 3_ BATMED NO medium priority batch
 __ BATPIER NO test priority batch
 __ BATSUB NO test priority batch
 __ CBDEF NO Component Broker Default
 __ CBHI NO Component Broker high priority
 __ CBLO NO Component Broker low priority
 __ CICSCONV NO CICS conversational trans
 __ CICSDEF NO CICS Default trans
 __ CICSHI NO CICS high priority trans

At this point, we specify that the override will add Resource Group OVRG to BATMED service
class. Example 4-7 shows this task.

Example 4-7 Override of BATMED service class

Service-Class Xref Notes Options Help
--
 Override attributes for a Service Class Row 1 to 2 of 2
Command ===> __

Service Policy Name : OVERPOL
Service Class Name : BATMED

Override the following information:
Resource Group OVRG (name or ?)
Cpu Critical NO (YES or NO)

Action Codes: I=Insert new period, E=Edit period, D=Delete period.

 ---Period--- ---------------------Goal---------------------
Action # Duration Imp. Description
 __
 __ 1 5 Execution velocity of 20

After completing these steps, you need to install the service definition. Now, we need to
activate the override with the command shown in Example 4-8 on page 146. This command
can be automatically scheduled and issued by the automatic operator of your choice.
Chapter 4. Implementation and workload classifications 145

Example 4-8 Command to activate override policy

V WLM,POLICY=OVERPOL
IWM001I WORKLOAD MANAGEMENT POLICY OVERPOL NOW IN EFFECT

In the SDSF display activity panel, you can check that the new definition is active, as shown in
Example 4-9. BATMED service class now has Resource Group OVRG assigned.

Example 4-9 SDSF view of Resource Group

Display Filter View Print Options Help

SDSF DA #@$1 (ALL) PAG 0 SIO 40 CPU 19/ 18
COMMAND INPUT ===>
NP JOBNAME U% Workload SrvClass SP ResGroup Server
 JESJO29 18 BAT_WKL BATMED 1 OVRG NO
 JESJO31 18 BAT_WKL BATMED 1 OVRG NO
 JESJO23 18 BAT_WKL BATMED 1 OVRG NO

JESJO39 21 BAT_WKL BATMED 1 OVRG NO
 JESSOP6 19 BAT_WKL BATSUB 1 NO

When you do not need this variation any longer, you can reset to the initial policy definition
(without Resource Group OVRG assigned to service class BATMED) by issuing the
command shown in Example 4-10.

Example 4-10 Command to restore initial policy

V WLM,POLICY=WLMPOL
IWM001I WORKLOAD MANAGEMENT POLICY WLMPOL NOW IN EFFECT

Example 4-11 shows the service class that no longer has a Resource Group assigned.

Example 4-11 SDSF view of original setting of BATMED service class

Display Filter View Print Options Help

SDSF DA #@$1 (ALL) PAG 0 SIO 190 CPU 67/ 61 LINE 1-2
COMMAND INPUT ===> S
NP JOBNAME PU% Workload SrvClass SP ResGroup Server Quiesc
 JESJO29 61 BAT_WKL BATMED 1 NO
 JESJO26 61 BAT_WKL BATMED 1 NO
 JESJO32 61 BAT_WKL BATMED 1 NO

JESJO27 69 BAT_WKL BATMED 1 NO
 JESJO36 69 BAT_WKL BATMED 1 NO

Overriding a Resource Group definition
In this example, we describe how to override the maximum capacity setting of an existing
Resource Group definition.

Example 4-12 on page 147 shows the actual setting.
146 System Programmer’s Guide to: Workload Manager

Example 4-12 Actual setting of Resource Group RGMED

 Resource-Group Notes Options Help
--
 Create a Resource Group
Command ===> __

Enter or change the following information:

Resource Group Name RGMED (required)
Description ITSO Resource Group

Define Capacity:
1 1. In Service Units (Sysplex Scope)
 2. As Percentage of the LPAR share (System Scope)
 3. As a Number of CPs times 100 (System Scope)
Minimum Capacity ______
Maximum Capacity 15000

We create the service policy override OVERRG.

Example 4-13 shows that we now have three service policies:

� WLMPOL is the base policy.
� OVERPOL is the override policy for adding and removing the Resource Group.
� OVERRG is the service policy override to modify the Resource Group capacity definition.

Example 4-13 OVERRG service policy override creation

Service-Policy View Notes Options Help
--
 Service Policy Selection List Row 1 to 3 of 3
Command ===> __

Action Codes: 1=Create, 2=Copy, 3=Modify, 4=Browse, 5=Print, 6=Delete,
 7=Override Service Classes, 8=Override Resource Groups,
 /=Menu Bar
 ----Last Change-----
Action Name Description User Date
 __ OVERPOL ITSO policy override CASSIER 2005/04/02
 __ OVERRG ITSO policy override resource gr CASSIER 2005/04/02
 __ WLMPOL Sample WLM policy CASSIER 2005/04/02

Example 4-14 on page 148 shows that we use option 8 on policy OVERRG to override the
Resource Group.
Chapter 4. Implementation and workload classifications 147

Example 4-14 Specifying Resource Group override

 Service-Policy View Notes Options Help
--
 Service Policy Selection List Row 1 to 3 of 3
Command ===> __

Action Codes: 1=Create, 2=Copy, 3=Modify, 4=Browse, 5=Print, 6=Delete,
 7=Override Service Classes, 8=Override Resource Groups,
 /=Menu Bar
 ----Last Change-----
Action Name Description User Date
 __ OVERPOL ITSO policy override CASSIER 2005/04/02
 8_ OVERRG ITSO policy override resource gr CASSIER 2005/04/02
 __ WLMPOL Sample WLM policy CASSIER 2005/04/02

Example 4-15 shows how to select which Resource Group we want to override.

Example 4-15 Specifying the Resource Group to override

 Resource-Group View Notes Options Help
--
 Override Resource Group Selection List Row 1 to 4 of 4
Command ===> __

Service Policy Name : OVERRG

Action Codes: 3=Override Resource Group, 4=Browse, 5=Print,
 6=Restore Base attributes, /=Menu Bar

 Resource Overridden
Action Group attributes Description
 __ LIMITRG NO control quiesced nonswappables
 __ OVRG NO ITSO Resource Group override
 3_ RGMED NO ITSO Resource Group
 __ RGPIER NO

Example 4-16 shows the change for the maximum capacity value.

Example 4-16 Setting new maximum capacity value for Resource Group OVERRG

Override Xref Notes Options Help
--
 Override Attributes for a Resource Group
Command ===> __

Service Policy Name : OVERRG
Resource Group Name : RGMED

Enter or change the following:

New Minimum Capacity ______
New Maximum Capacity 08000

Example 4-17 on page 149 shows a RMF Monitor III Display report for RGMED. The
maximum capacity value is still 15000 SU/s.
148 System Programmer’s Guide to: Workload Manager

Example 4-17 Resource Group RGMED display before override activation

Service Definition: WLMDEF Installed at: 04/02/05, 11.26.03
 Active Policy: WLMPOL Activated at: 04/02/05, 11.26.17

 Exec Vel Resp. Time Resource ----- Capacity -----
Name T I Goal Goal Duration Group Min Max Act

BAT_WKL W
BATMED S 5 20 RGMED N/A 15000 14079
BATSUB S 2 30 N/A N/A 5.8083
STC_WKL W
OPSDEF S 3 40 N/A N/A 1579.3

Example 4-18 shows policy OVERRG activation by the VARY WLM command.

Example 4-18 Command to activate OVERRG service policy

V WLM,POLICY=OVERRG
IWM001I WORKLOAD MANAGEMENT POLICY OVERRG NOW IN EFFECT

Example 4-19 shows a RMF Monitor III Display report for service class BATMED. You can see
that Resource Group RGMED now has a maximum capacity of 8000 SU/s.

Example 4-19 Resource Group RGMED display after override activation

Service Definition: WLMDEF Installed at: 04/02/05, 11.26.03
 Active Policy: OVERRG Activated at: 04/02/05, 11.37.09

 Exec Vel Resp. Time Resource ----- Capacity -----
Name T I Goal Goal Duration Group Min Max Act

BAT_WKL W
BATMED S 5 20 RGMED N/A 8000 7960
BATSUB S 2 30 N/A N/A 6.0833
STC_WKL W

4.2.16 Evaluating your SMF records
When you implement goal mode, make sure that you turn off the collection of SMF type 99
records. These records trace the decisions that WLM makes while in goal mode, and the
actions taken. SMF type 99 records are written frequently and are required for detailed
diagnosis only. With APAR OW28820 installed, SMF99 records are buffered in WLM private
storage. A dump of the WLM address space contains the last 15 minutes of SMF99 records.
This should be sufficient for many diagnostic situations.

Review your accounting based on SMF record type 30 or record type 72 records; you might
need to update your accounting package.

For more information about SMF record changes for goal mode, see z/OS MVS System
Management Facilities, SA22-7630.
Chapter 4. Implementation and workload classifications 149

4.2.17 Installing and activating your service definition
To install your service definition, you can either use the WLM ISPF application or use the
install definition utility.

To use the WLM ISPF application, go into it specifying the name of the PDS containing your
service definition. From the Definition Menu, go to Utilities on the action bar. Then select the
pull-down option Install definition. See Figure 4-29 for the Install service definition panel.

Figure 4-29 Install service definition panel

To use the install definition utility, you need to customize the sample JCL IWMINSTL, which
ships in SYS1.SAMPLIB. Follow the instructions in the prolog of the JCL. After you prepare
the JCL, start it from the command console or submit it as a batch job. Figure 4-30 on
page 151 shows the sample JCL for the install definition utility.

 File Utilities Notes Options Help
 ----- EsssN ----------------
 Funct e 1. Install definition e Appl LEVEL013
 Comma e 2. Extract definition e _________________
 e 3. Activate service policy e
 Defin e 4. Allocate couple data set e
 e 5. Allocate couple data set using CDS values e
 Defin e 6. Validate definition e
 Descr DsssM n

 Select one of the
 following options. ___ 1. Policies
 2. Workloads
 3. Resource Groups
 4. Service Classes
 5. Classification Groups
 6. Classification Rules
 7. Report Classes
 8. Service Coefficients/Options
 9. Application Environments
 10. Scheduling Environments

150 System Programmer’s Guide to: Workload Manager

Figure 4-30 Install definition utility sample JCL

4.3 Current WLM users upgrading to a new OS
This section discusses several considerations when you migrate to a new release of the
operating system (OS). It discusses WLM compatibility and coexistence issues between OS
releases.

4.3.1 WLM compatibility and coexistence
If you are running with mixed z/OS releases on a sysplex, consider whether you need to apply
compatibility APARs to enable different levels of WLM to coexist until you can upgrade the
entire sysplex to the new release.

WLM running in OS/390 2.10 up to z/OS 1.6 have no compatibility issues. These releases
can coexist with each other without any PTF needed. If your operating system is lower than

//IWMINSTL JOB MSGLEVEL=(1,1),REGION=0M
//*
//SETPARM1 SET SVDEFPDS='your.definition.pds'
//SETPARM2 SET FORCE='N'
//SETPARM3 SET POLNAME=''
//*
//STEP1 EXEC PGM=IKJEFT1B,
// PARM='IWMARIDU F=&FORCE P=&POLNAME'
//SYSPROC DD DSN=SYS1.SBLSCLI0,
// DISP=SHR
//*
//ISPLLIB DD DSN=ISP.SISPLPA,
// DISP=SHR
// DD DSN=ISP.SISPLOAD,
// DISP=SHR
//ISPMLIB DD DSN=ISP.SISPMENU,
// DISP=SHR
//ISPPLIB DD DSN=ISP.SISPPENU,
// DISP=SHR
//ISPTLIB DD DSN=ISP.SISPTENU,
// DISP=SHR
//ISPSLIB DD DSN=ISP.SISPSENU,
// DISP=SHR
//ISPTABL DD DISP=NEW,UNIT=SYSALLDA,SPACE=(CYL,(1,1,5)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=0)
//ISPPROF DD DISP=NEW,UNIT=SYSALLDA,SPACE=(CYL,(1,1,5)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=0)
//ISPLOG DD DISP=NEW,UNIT=SYSALLDA,SPACE=(CYL,(1,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=0)
//ISPCTL1 DD DISP=NEW,UNIT=SYSALLDA,SPACE=(CYL,(1,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=0)
//ISPLST1 DD DISP=NEW,UNIT=SYSALLDA,SPACE=(CYL,(1,1)),
// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210)
//SVDEF DD DSN=&SVDEFPDS,
// DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD DUMMY
Chapter 4. Implementation and workload classifications 151

OS/390 2.10, then you need to refer to z/OS MVS Planning: Workload Management,
SA22-7602, for the corresponding compatibility PTFs.

4.3.2 WLM enhancements matrix
Table 4-6 lists all the new functions that were added to WLM from z/OS 1.3 through 1.7, either
as part of the z/OS release (indicated with an asterisk (*)) or as an APAR.

Table 4-6 WLM enhancements matrix

Note: The WLM service definition is stored in ISPF tables. When a new release adds
certain specifications to the service definition, structural changes to the ISPF tables are
required. When you open a service definition whose table structure is different (older) than
the one currently used by the WLM ISPF application, the WLM ISPF application
automatically updates the service definition structure. After this occurs, older levels of the
WLM ISPF application cannot read the service definition unless you install the compatibility
APARs.

From OS/390 2.10 up to z/OS 1.6, there is no change in the ISPF table structures. If you
are running on an operating system lower than OS/390 2.10, then refer to z/OS MVS
Planning: Workload Management, SA22-7602, for more information.

Function z/OS 1.8 z/OS 1.7 z/OS 1.6 z/OS 1.5 z/OS 1.4

Lightweight EWLM
instrumentation through WLM
enclave services

*

Enhanced initiator balancing * * * * *

Controlling initiator dispatch
priority in goal mode

* * * * OW55344

WLM-managed initiator start
considers system affinities

* OA10814 OA10814 OA10814 OA10814

Dynamic Application
Environments

* * * * OW54622

Stateful session placement * * * OA04699 OA04699

Enhancements for
WLM-established stored
procedures

* * * OA04555 OA04555

Sub-capacity pricing
enhancements

* * * * OW55509

SCRT extensions for dedicated
processors

* *

Enhanced enqueue promotion * * * * *

DB2 latch contention * * OA08949 OA08949

zAAP reporting support * * *

Dynamically handle speed
changes on z890, z990, or later

* OA12155 OA07510
OA12155

OA07510 OA07510

Sysplex routing enhancements * *
152 System Programmer’s Guide to: Workload Manager

4.4 WLM tools
This section is about the WLM tools available from IBM. You can download these tools
through the Internet. We have added information about these tools here for easy reference.
To download the tools, go to the following Web site:

http://www.ibm.com/servers/eserver/zseries/zos/wlm/tools/

4.4.1 Service Definition Formatter
The Service Definition Formatter is a small tool that assists you to display your WLM service
definition. To use the tool, you only need to download the WLM service definition to your
workstation and load it into the spreadsheet. Then, you can use the various worksheets to
display parts of your service definition to get a better overview of your workload management
definitions.

The tool is not a service definition editor. You must enter all modifications to the WLM service
definition through the WLM Administrative Application.

To install the tool, download SetUpSvDef.exe (228 KB) to your workstation and execute the
installation program. For more information, refer to the readme.pdf in the installation path of
the tool.

4.4.2 WLM Work Queue Viewer
The WLM Work Queue Viewer (WLMQUE) is a small ISPF-based tool that can assist you to
display the Application Environments that are currently in use on your z/OS system. This can
be helpful for using WebSphere Application Servers when you specify minimum and
maximum limits for the number of server address spaces that should be started. You can view
the number of started and active server address spaces, and the service classes used as

Enhancements in computation of
free capacity in LPAR
environments

* * OA10006 OA10006 OA10006

EWLM monitoring support 1 * * OA07196

WLM support of multiple
subchannel sets (z9-109)

* *

EWLM policy correlation * OA12784 OA12784

zIIP reporting support * OA16005 OA16005

zAAP processing enhancement * OA14131
OA13953

OA14131
OA13953

z/OS 1.8 coexistence * OA13837 OA13837 OA13837 OA13837

RSM/SRM support for > 128 GB
real storage

*

IEAOPT MCCAFCTH
enhancement

* OA14409 OA14409

Routing (“Storm Drain”)
enhancements

* OA14310

Function z/OS 1.8 z/OS 1.7 z/OS 1.6 z/OS 1.5 z/OS 1.4
Chapter 4. Implementation and workload classifications 153

http://www.ibm.com/servers/eserver/zseries/zos/wlm/tools/
http://www.ibm.com/servers/eserver/zseries/zos/wlm/tools/

work queues for the Application Environments with the help of the REXX command list. Use
this tool for any kind of Application Environment from WebSphere, DB2, or user-specified
types and applications.

To install the tool, download wlmque.zip (version 1.8.001, 90 KB) to your workstation. Unzip
the file and follow the installation instructions in readme.txt. The tool was written on a z/OS
1.8 system and should run from z/OS 1.6 and above.

4.4.3 WLM Service Definition Editor
As an alternative to the WLM ISPF application, a user friendly graphical interface is available.
This WLM policy editor is a workstation-based application that is able to read data from WLM
ISPF data sets. The data is converted to xml format on the workstation. In this format, you can
create advanced reports and modify the Service Policy. The WLM Service Definition Editor
can convert the xml format back to ISPF format and saves the changed data (service
definition) in a WLM ISPF data set on the host.

The WLM Service Definition Editor does not provide support to extract, install, and activate
z/OS WLM service definitions and to allocate WLM couple data sets. This means that the
WLM Service Definition Editor does not interact with the WLM component of the z/OS
operating system; it solely operates on WLM service definitions in ISPF format.

Install the service definition using either the existing ISPF WLM Administrative Application or
the WLM operator commands. Figure 4-31 depicts the process.

Figure 4-31 Policy editor process

This is a list of the advanced functionalities available with the new application compared to the
WLM ISPF interface:

� Easy creation and editing of WLM service definitions:

– Clearly arranged representation of service definition elements via table or tree views
– Direct manipulation of service definition elements (no pop-up windows)
– Identification of doubtful specifications
– Error list

read/write

WLM
ISPF

Tables

WLM
CDS

install
activate

ISPF Administrative Application

install/activate
read/write

WLM Policy Editor

Workstation z/OS
154 System Programmer’s Guide to: Workload Manager

– Context-sensitive help information
– Automatic upload and download of service definitions via FTP and FTPS

� Support for analysis and optimization of WLM service definitions:

– Different views (tree view, table view, or print view)
– Display of service definition element relationships
– Sorting and rearranging capability of service definition elements in table view
– Searching capability of entire service definition

� Printout of WLM service definitions in HTML format

� National language support

Getting started
The instructions to install and use this application are:

1. Download the WLM Service Definition Editor.

The new WLM Administrative Application is available from the IBM Web site:

http://www.ibm.com/server/eserver/zseries/zos/wlm/tools/sdeditor.html

In our configuration, we downloaded the WLM Service Definition Editor Version 1.0.1
installation program and installed it on a Windows® XP Workstation. After starting the
setup, the installation wizard guides you through the process.

2. Start the Service Definition Editor.

To start the WLM service definition on your workstation, select the IBM Workload
Management program and click IBM WLM Service Definition Editor.

Figure 4-34 shows an example of the workstation’s window.

Figure 4-32 Starting the IBM WLM Service Definition Editor

3. Download your service definition.

Although you can create a new service definition with the WLM service definition, you
might want to start with your existing active service definition on your z/OS system. To do
so, the ISPF format service definition has to be transferred to your workstation. Check that
FTP from the mainframe to the workstation is enabled and get the IP address of your
mainframe where the service definition exists. In our case, we select Options FTP
Profile. Figure 4-33 on page 156 shows an example of the workstation window.

Note: Only one instance of the WLM Service Definition Editor can run at a time. Do not
close the DOS window which comes up with the Java application, because if you do, you
close the Java application without cleaning up the WSELog file. If you try to start the
application again, then you get an error message that the application is already running. In
this case, delete the file WSELog in the directory where you installed the WLM Service
Definition Editor. You can then restart the application.
Chapter 4. Implementation and workload classifications 155

http://www.ibm.com/server/eserver/zseries/zos/wlm/tools/sdeditor.html

Figure 4-33 Select Options FTP Profiles

Now, click the name to highlight the profile and select Edit to change the data with your
system setup. When finished, select Save to save your FTP profile and then Close.
Figure 4-34 shows an example of the workstation window.

Figure 4-34 Edit and save your FTP Profile

Upload and download of a service definition is triggered through the Transfer option of the
file menu. To work with your service definition, first you have to download it to your
156 System Programmer’s Guide to: Workload Manager

workstation. On your workstation window, select File Transfer. Figure 4-35 shows an
example of the workstation window.

Figure 4-35 Set up File Transfer

Click the name to highlight the Policy name and select Edit to change the name to the
Host DS to the data set name that reflects the ISPF data set where you saved the WLM
service definition on the host. Change the Name and Local File fields to new values unless
you want to override the sample files delivered with WLM Service Definition Editor.
Figure 4-36 on page 158 shows an example of the workstation window.
Chapter 4. Implementation and workload classifications 157

Figure 4-36 Update WLM ISPF data set and workstation names

Select Save to save the changes. Download and upload of a service definition is triggered
by selecting File Transfer. To work with your WLM ISPF service definition, you have to
download it first to your workstation. On your workstation window, click the name of your
service definition to highlight it, then select Download and enter your password to access
the host. Click OK. Figure 4-37 on page 159 shows an example of the workstation
window.
158 System Programmer’s Guide to: Workload Manager

Figure 4-37 Downloading the service definition

In the DOS window that opens together with the Java application at startup time, you see
the progress of your FTP. After the FTP finishes successfully, your service definition policy
is now stored on your workstation. Select Yes to start working with your WLM service
definition on your workstation. Figure 4-38 on page 160 shows an example of the
workstation window.
Chapter 4. Implementation and workload classifications 159

Figure 4-38 Download WLM service definition

Now you are ready to work with your WLM service definition. To display the types of
elements in the service definition, just click one of the tabs. Figure 4-39 shows the service
definition window, which is the default window when you start.

Figure 4-39 Display of the Service Definition
160 System Programmer’s Guide to: Workload Manager

4. Modify your service definition.

To change a service class, select the Workloads and Service Classes tab, click the line
of the service class that you want to change in order to select (highlight) that service class,
and then right-click. Select Replace by and the type of goal you want. In our case, we
want PercentileResponse Time. Figure 4-40 shows an example of the workstation
window.

Figure 4-40 Insert a new service class

Figure 4-41 on page 162 guides you through the definition process. The (red) highlighted
areas are the minimum required areas that you have to fill with data.
Chapter 4. Implementation and workload classifications 161

Figure 4-41 Change service class DDFDEF Period 2

You might want to save your downloaded and modified service definition now. To save your
service definition, select File Save as and enter the name where you want the
application to save your Service Policy. Figure 4-42 on page 163 shows an example of the
workstation window.
162 System Programmer’s Guide to: Workload Manager

Figure 4-42 Save the service definition

After specifying a name for your service definition, click Save to save the service
definition.

The next time that you start the WLM service definition Editor and select File Open,
you see the Policy that you saved on the selection menu. Click the Policy that you want to
open in order to select it (highlight it) and select Open. Figure 4-43 on page 164 shows an
example of the workstation window.
Chapter 4. Implementation and workload classifications 163

Figure 4-43 Open saved service definition

5. Upload your service definition.

After you finish with modifications, you can upload the changed service definition to the
Host. Select File Transfer, click the Name to select (highlight) your service definition,
and select Upload on your workstation window. Figure 4-44 on page 165 shows an
example of the workstation window.
164 System Programmer’s Guide to: Workload Manager

Figure 4-44 Upload your service definition

The WLM service definition Editor application now initiates an FTP connection to the host.
If the specified ISPF data set already exists on the host, a window appears asking you for
permission to overwrite the existing data set. Select Yes to save your modified service
definition to the ISPF data set. Figure 4-45 on page 166 shows an example of the
workstation window.
Chapter 4. Implementation and workload classifications 165

Figure 4-45 Saving the new service definition

For further details, refer to the online help available on the application panel or to the
documentation supplied in PDF format. You downloaded this documentation PDF file
together with the other files into the folder where you installed the application. To open the
PDF file, either select it when you start the Application or open WSEUserGuide.pdf from
the folder.
166 System Programmer’s Guide to: Workload Manager

Chapter 5. Setting goals

This chapter gives you generic recommendations for setting up Workload Manager (WLM).

This chapter discusses tips to:

� Manage your service definition.
� Use a service class.
� Select the type of goals to use.
� Use Resource Groups.

5

© Copyright IBM Corp. 2005, 2006, 2007. All rights reserved. 167

5.1 Using service classes
In setting up your service class, there are two objectives that you want to achieve:

� Distinguish different work and define service classes so that different groups of users get
the service that they need from the operating system.

� Keep your service classes to a minimum. Every 10 seconds, WLM examines all service
classes in order to determine which service classes need help. If there are too many
service classes, then it can take a long time for WLM to help lower importance service
classes.

Additionally, the more service classes you have, the more likely it is that some of the lower
importance service classes receive no service if the system is CPU-constrained.

We should define service classes to distinguish all types of work and users from each other;
however, we should minimize the number of service classes in order to help WLM to work
efficiently. Here are suggestions to help satisfy both requirements:

� Define a default service class with a specific name for each major subsystem even if it is
not used today in the environment. With this approach, new work is always classified by
the subsystem that brings it into the system. Otherwise, new work is classified to the
SYSOTHER service class, and it is a good practice to leave this service class empty. It is
also a good practice to define a default service class for the STC subsystem. Otherwise,
address spaces that do not match any classification attribute are classified in the SYSSTC
service class.

� Service classes should only be defined for work when sufficient demand exists for them in
the system. You can measure the demand either by the service consumption or by the
amount of ending transactions during high utilization periods of this work. It probably does
not make sense to define service classes with a demand of less than 1% of measured
service units at any period or less than 1 transaction ending per minute. It is usually better
to combine this work with other similar work.

� It is not meaningful to create service classes for the same type of work with identical
service objectives. For example, if you define started tasks for different applications with
exactly the same goals and importance, you can combine them in the same service class
and use report classes to differentiate them for reporting purposes.

� Do not combine diverse types of work into one service class. For example, do not combine
transactions and address spaces into one service class. SRM sampling data, plots, and
projections can become distorted when you do this.

� Do not define extra service classes for reporting purposes. WLM supports up to 999 report
classes, which should satisfy all reporting requirements. See 5.2.9, “Using report classes”
on page 183 for instructions to set up report classes.

� Use the SPM qualifier to correctly classify system address spaces in the SYSTEM or
SYSSTC service classes. For a detailed discussion of SYSTEM and SYSSTC, refer to
“General considerations for STC” on page 224. System tasks are tasks that are given the
privileged and system task attribute in the IBM-supplied program properties table or in the
SCHEDxx parmlib member. SPM rules assign these tasks to either SYSTEM or SYSSTC.
Classifying system address spaces into service classes with low service or low importance
can cause severe system problems. Example 7-4 on page 227 shows a classification
method and explains the usage of the SPM parameter and what you should manually
classify in SYSSTC.

� Limit the number of started task service classes to two or three in addition to SYSSTC and
SYSTEM.
168 System Programmer’s Guide to: Workload Manager

� Identify other critical system-started tasks, and if CPU requirements are reasonable and
there is sufficient storage, assign them to SYSSTC.

� Monitor the SYSSTC service class’s CPU usage. If high importance and online systems
experience delay caused by SYSSTC, adjust SYSSTC by moving heavy CPU users to a
different service class.

� Evaluate the need for a high velocity service class which can be used to push emergency
batch jobs through the system during periods of heavy CPU utilization. Only use it for
special cases; otherwise, it can be counterproductive. We recommend that you monitor
this service class usage.

� Consider creating a special high velocity, high importance TSO service class for
emergencies. If the system hangs, you can use the RESET command to assign your TSO
user ID to this class to allow you to investigate. Note that you might still need to wait for
WLM to identify that this service class is delayed and adjust its priority. Assigning the TSO
user ID to SYSSTC is an alternative.

� To handle runaway jobs or transactions, consider creating a “sleeper” service class.
Associate the service class with a Resource Group and specify a maximum service unit
capacity of 1. “Quiescing a batch job” on page 208 shows you how to use this Resource
Group setting for batch and you can use this example in other cases.

� Ensure that you have properly classified enclave transactions in the WLM service
definition in order to prevent them from being managed as discretionary work.

� Avoid the common error of not classifying Distributed DB2 Transactions ((running under
the Distributed Data Facility (DDF) subsystem type)), and then they end up managed as
discretionary work.

� Consider the following method to handle unclassified work. Create a service class (for
example, service class = UNCLASS) that you can use as the default service class in the
classification rules for subsystems that have not been specifically assigned a service
class. Assign this service class an appropriate goal and give it a unique report class to
identify work that has fallen through the rules. Regularly check for work in SYSOTHER or
your installation’s defined default service class (UNCLASS) and classify it to the correct
service class.

Using these guidelines, you should be able to stay in a range of 25 to 30 service class periods
with nondiscretionary goals, even in environments with a high diversity of work on the
systems. It is not a problem to define more service class periods as long as not all of them are
active at the same time. Thirty is not a hard boundary. It is possible to run a sysplex
environment with more active service classes. We recommend 30 to reduce efficiency
problems. Note that service classes with discretionary goals do not count, because they are
not managed to goals.

5.2 Defining and maintaining service goals
Use the following guidelines when defining your service goals for the first time or in the
process of reevaluating your goal definitions.

Always define goals based on measurement intervals of high system utilization or high
system contention periods. This gives you the best indication of whether the goals can be
achieved.

You should base goals on what can actually be achieved, not what you want to happen. The
goals you set are how WLM knows whether your system is running OK, or whether it needs to
Chapter 5. Setting goals 169

make changes. If you set goals higher than necessary, WLM moves resources from lower
importance work to higher importance work which might not actually need the resources.

Avoid using goals to prioritize work. Use the degree of importance to indicate the importance
of the work, and set the goal to what is actually needed. Do not expect work of higher
importance to always get a higher dispatching priority than lesser important work. Dispatching
priorities depend on the goal and the characteristics of the work. It is common to see low
velocity goal work with a dispatching priority higher than high velocity work due to differences
in the work; commonly, high priority work also demands more CPU. If you really need to
manage the dispatching priorities, use the CPU Critical function.

The test of whether the WLM policy works is when the system is heavily loaded. At quiet
times, just about any policy performs OK. When the system is busy, the policy determines
where limited resources go.

5.2.1 Using historical data to set goals
In Figure 5-1, we want to determine a goal for an IMS service class. Figure 5-1 shows the
CEC, system, and workload utilization for IMS. You can observe four periods of high system
utilization in this trend report, which shows a two-day period at the end of a quarter in 2004.
For all four periods, the utilization of the CEC and the utilization of the LPAR or system are
high, but only the first and the third periods show a high utilization for the IMS workload.
These are the periods on which we base our decisions.

Figure 5-1 IMS service class utilization periods

The graphic in Figure 5-2 on page 171 shows the addition of the achieved execution velocity.
Observe that the value is extremely variable during low utilization periods, and that the lowest
values for a longer time period happen during the identified high utilization periods for IMS.
The two squares mark the range for both periods in which the achieved execution velocity

High Utilization Periods

0

20

40

60

80

100

120

09
/3

0-
05

.5
9.

00

09
/3

0-
07

.0
9.

00

09
/3

0-
08

.1
9.

00

09
/3

0-
09

.2
9.

00

09
/3

0-
10

.3
9.

00

09
/3

0-
11

.4
9.

00

09
/3

0-
12

.5
9.

00

09
/3

0-
13

.5
9.

00

09
/3

0-
15

.0
9.

00

09
/3

0-
16

.0
9.

00

09
/3

0-
17

.1
9.

00

09
/3

0-
18

.2
9.

00

09
/3

0-
19

.3
9.

00

09
/3

0-
20

.4
9.

00

09
/3

0-
21

.5
9.

00

09
/3

0-
23

.0
9.

00

10
/0

1-
00

.1
9.

00

10
/0

1-
01

.2
9.

00

10
/0

1-
02

.3
9.

00

10
/0

1-
03

.4
9.

00

10
/0

1-
04

.5
9.

00

10
/0

1-
06

.0
9.

00

10
/0

1-
07

.1
9.

00

10
/0

1-
08

.2
9.

00

10
/0

1-
09

.3
9.

00

10
/0

1-
10

.4
9.

01

10
/0

1-
11

.5
9.

00

10
/0

1-
13

.0
9.

00

10
/0

1-
14

.1
9.

00

10
/0

1-
15

.2
9.

00

10
/0

1-
16

.3
9.

00

10
/0

1-
17

.4
9.

00

10
/0

1-
18

.5
9.

00

10
/0

1-
20

.0
9.

00

10
/0

1-
21

.1
9.

00

10
/0

1-
22

.2
9.

00

10
/0

1-
23

.3
9.

00

CPU Utilization of the CEC CPU Utilization of the LPAR CPU Utilization for IMS

1 2 3 4
170 System Programmer’s Guide to: Workload Manager

varies. For the first period, it is in the range between 30 and 55, and in the second period, it is
in the range from below 20 to 40.

Figure 5-2 Utilization and execution velocity

This is now the base for defining the execution velocity goal. We can also observe that a
value seems to be the lower margin during normal contention periods. As a result, a value of
40 is probably a meaningful value for this work on this system. During very high periods, the
goal value is a little too high, so WLM puts more attention to this work; while during normal
periods, this value can still be achieved. An alternative is to specify a value of 50. This is now
already a stringent value during normal contention periods, and it is only meaningful if the
period of 10/01 is really exceptional. If this system is part of a sysplex, you must verify
whether this value is usable for the work on the other systems, too.

This example shows an approach to determine an execution velocity goal for the work. The
approach for determining a response time goal is similar. Figure 5-3 on page 172 shows the
same time period for the same IMS workload. Now, we plot the IMS ended transaction rate
(ETRX) and the ended transaction time (TTM) also. Note that the ended transaction rate
follows the curve of the IMS workload utilization from the chart in Figure 5-2. The average
transaction ended time also shows a similar pattern to the execution velocity on the chart in
Figure 5-2. While it also shows high fluctuation during periods with few transactions running,
it is quite stable during periods where many transactions are in the system. Again, on 10/1,
the average response time is slightly worse than during other high utilization periods.

Nevertheless, notice that with all similarities, the change in response time seems to have a
less noticeable effect than the change in execution velocity even if the observed values are
doubled in both cases. The execution velocity shows a range from 30 to nearly 60 during a
higher contention period, and the average response time is within a range between 0.1
seconds and 0.2 seconds.

Utilization and Execution Velocity

0

20

40

60

80

100

120

09
/3

0-
05

.5
9.

00

09
/3

0-
07

.0
9.

00

09
/3

0-
08

.1
9.

00

09
/3

0-
09

.2
9.

00

09
/3

0-
10

.3
9.

00

09
/3

0-
11

.4
9.

00

09
/3

0-
12

.5
9.

00

09
/3

0-
13

.5
9.

00

09
/3

0-
15

.0
9.

00

09
/3

0-
16

.0
9.

00

09
/3

0-
17

.1
9.

00

09
/3

0-
18

.2
9.

00

09
/3

0-
19

.3
9.

00

09
/3

0-
20

.4
9.

00

09
/3

0-
21

.5
9.

00

09
/3

0-
23

.0
9.

00

10
/0

1-
00

.1
9.

00

10
/0

1-
01

.2
9.

00

10
/0

1-
02

.3
9.

00

10
/0

1-
03

.4
9.

00

10
/0

1-
04

.5
9.

00

10
/0

1-
06

.0
9.

00

10
/0

1-
07

.1
9.

00

10
/0

1-
08

.2
9.

00

10
/0

1-
09

.3
9.

00

10
/0

1-
10

.4
9.

01

10
/0

1-
11

.5
9.

00

10
/0

1-
13

.0
9.

00

10
/0

1-
14

.1
9.

00

10
/0

1-
15

.2
9.

00

10
/0

1-
16

.3
9.

00

10
/0

1-
17

.4
9.

00

10
/0

1-
18

.5
9.

00

10
/0

1-
20

.0
9.

00

10
/0

1-
21

.1
9.

00

10
/0

1-
22

.2
9.

00

10
/0

1-
23

.3
9.

00

0

20

40

60

80

100

120

CPU Utilization of the CEC CPU Utilization of the LPAR CPU Utilization for IMS Execution Velocity for IMS
Chapter 5. Setting goals 171

In order to completely assess the response time goal, you must examine the response time
distribution as well. If this is the first step to introduce the response time goal, the distribution
might not be available, but you need to consider it in a later step. As a starting point, we
suggest that you define an initial percentile between 85% and 90%, but you need to adjust
the response time value, too.

Figure 5-3 Utilization and transactions

In these examples, we demonstrate how to select a time period to derive an execution
velocity or response time goal for an online workload. Now, we need to determine which
periods to use when we try to define the goals for the batch work. Referring back to
Figure 5-1 on page 170, we see that there were two periods when the online workload was
executed and two high utilization periods where other work, in this case, batch, was executed.
In order to determine which periods to use, consider:

� If the batch work really runs only in the periods when no online work is running, we can
use the same approach as above to determine the time period for the goal definition for
batch.

� If the batch work also runs in parallel to the online work, it is better for you to use the same
periods you use for the online work, even if the batch CPU consumption is much smaller
during these periods. This is simply because, in most cases, we do not want batch to
impact the online work.

5.2.2 Using response time goals
There are two types of response time goal: average response time and percentile response
time. Work must have at least 10 completions in 20 minutes to use a response time goal.

The response time represents the time that WLM is aware of the unit of work. For an enclave,
this is the time between enclave create and enclave delete. For CICS and IMS, it is the time

Utilization and Transactions

0

20

40

60

80

100

120

09
/3

0-
05

.5
9.

00

09
/3

0-
07

.0
9.

00

09
/3

0-
08

.1
9.

00

09
/3

0-
09

.2
9.

00

09
/3

0-
10

.3
9.

00

09
/3

0-
11

.4
9.

00

09
/3

0-
12

.5
9.

00

09
/3

0-
13

.5
9.

00

09
/3

0-
15

.0
9.

00

09
/3

0-
16

.0
9.

00

09
/3

0-
17

.1
9.

00

09
/3

0-
18

.2
9.

00

09
/3

0-
19

.3
9.

00

09
/3

0-
20

.4
9.

00

09
/3

0-
21

.5
9.

00

09
/3

0-
23

.0
9.

00

10
/0

1-
00

.1
9.

00

10
/0

1-
01

.2
9.

00

10
/0

1-
02

.3
9.

00

10
/0

1-
03

.4
9.

00

10
/0

1-
04

.5
9.

00

10
/0

1-
06

.0
9.

00

10
/0

1-
07

.1
9.

00

10
/0

1-
08

.2
9.

00

10
/0

1-
09

.3
9.

00

10
/0

1-
10

.4
9.

01

10
/0

1-
11

.5
9.

00

10
/0

1-
13

.0
9.

00

10
/0

1-
14

.1
9.

00

10
/0

1-
15

.2
9.

00

10
/0

1-
16

.3
9.

00

10
/0

1-
17

.4
9.

00

10
/0

1-
18

.5
9.

00

10
/0

1-
20

.0
9.

00

10
/0

1-
21

.1
9.

00

10
/0

1-
22

.2
9.

00

10
/0

1-
23

.3
9.

00

0

0.05

0.1

0.15

0.2

0.25

0.3

CPU Utilization of the CEC CPU Utilization of the LPAR Ended Transaction Rate for IMS Ended Transaction Time for IMS

!

172 System Programmer’s Guide to: Workload Manager

when CICS and IMS start the monitoring environment for the transaction until the WLM API
report is issued. For a batch job, response time is the time when the job has finished the
conversion step until it is completed and the result is placed on the output queue. For TSO,
response time is the time from when the user presses Enter until the result is returned to the
terminal. Note that the response time measures different things depending on the subsystem
that is measured, and it is not an end-to-end response time.

In percentile response time goals, you set a response time target for a given percentage of
transactions (for example, 90% of transactions within 1 second). WLM tries to ensure that the
selected percentage of transactions finishes within the specified time. If there are a few
transactions that last much longer than most, they do not affect the management of the
majority.

You might used average response time goals if the transaction response times of a workload
are extremely homogeneous. Unfortunately, this is often not the case. You can also use
average response time goals during goal mode migration. It can be used as a starting point
for setting your response time goals, if you only have the existing average response time.
Initially, set an average response time goal. After running for a few days, you can collect the
response time distribution from RMF and use this distribution to determine whether the
workload is better suited for an average response time goal or a percentile response time
goal.

A few transactions with very long response times can greatly influence average response
time goals. Figure 5-4 on page 174 shows a response time distribution that is measured
internally by WLM. The example shows how only a few long-running transactions can
influence an average response time goal.

In Figure 5-4 on page 174, the average response time goal was set to 1 second. For the
observation period, there were 435 transactions running or ending. WLM internally creates
buckets around the response time goal in order to measure how many transactions are
ending or running within response time ranges. WLM does this for any response time goal.
The blue bars show the amount of transactions ending or running in a certain bucket. For
example, 141 of the 435 transactions were ending or running within half of the goal. The red
curve shows the accumulated number of transactions for all buckets up to the current bucket.
Around 70% of all transactions were found in buckets within the goal and 90% of all
transactions were within 1.25 seconds.

However, the average response time was higher than ten seconds. This was caused by
Three very long-running transactions, which appear in the right-most bucket, caused this
situation. The difficulty is that it is nearly impossible for WLM to find a positive resource
adjustment for the work when the goal is missed by a factor of 10. If the goal had been
defined as a percentile response time of 90% of the transactions to be completed within one
second, then the goal would have been missed by only a small number of transactions. WLM
has a much better chance of rearranging access to the resources to help the work running in
this service class.
Chapter 5. Setting goals 173

Figure 5-4 Response time buckets

The example in Figure 5-4 also shows that too stringent of a goal is not always helpful. The
goal must always allow WLM to make adjustments. This is most likely when the performance
index is around 1 or does not exceed 1 by too high of a margin.

For storage-constrained systems, the usage of response time goals might provide an
important advantage for interactive workloads.

5.2.3 Using response time goals for CICS and IMS
WLM allows you to classify the work of the CICS and IMS subsystems to service classes with
a response time goal. The advantage of doing this is that you get much better and more
granular reporting feedback of the work and that you use a more stable goal definition for the
CICS and IMS work as opposed to using execution velocity goals for the CICS and IMS
regions. Since OS/390 Release 10, you can also exempt certain regions from response time
management and thus exclude work, which cannot be managed very well toward response
time goals, from the management.

For using response time goals, you need to decide how much granularity you really want for
CICS and IMS work, or is it possible to distinguish a small amount of potentially long-running
transactions from the majority of short-running transactions. In order to answer this question,
we have to review how WLM manages transactions. As we see in this chapter, WLM creates
internal service classes for all address spaces that execute the same set of transactions. If
we now classify work to two different service classes (SCSHORT with a high importance and
a short response time goal and SCLONG with a low importance and a long response time

Ended and Running Transactions

141

2

108

23
10710

1 1
11

83

13
1 2 0 0 0 3

13
2 0 0 0 0 0 1 0 3

0

20

40

60

80

100

120

140

160

<0
.5

<0.
65

<0.
8

<0
.9

5
<1.

1

<1.
25

<1.
4

<1
.5

5
<1.

7

<1.
85 <2 <3

<4.
0 <5

Response Time Buckets

[#
]

0

20

40

60

80

100

120

[%
]

174 System Programmer’s Guide to: Workload Manager

goal), WLM creates up to three internal service classes based on possible combinations of
transactions that are executed by the server regions. The three internal service classes are:

� INTA = {only transactions for SCSHORT}
� INTB = {only transactions for SCLONG}
� INTC = {transactions for SCLONG and SCSHORT}

As the system runs, we see that all transactions were potentially executed by all available
server regions of the CICS environment. A deeper analysis showed that 65 CICS server
regions were in the system, and that one of these CICS server regions executed transactions
of SCLONG and SCSHORT. By examining the contribution of the work running in each
region and service class, we can draw the following picture (Figure 5-5).

Figure 5-5 CICS service classes contribution of work

Figure 5-5 shows that only a few samplings were executed against the address space
executing the transactions associated with the SCLONG service class, while transactions for
the SCSHORT service class were executed across all the address spaces.

Figure 5-6 on page 176 now shows a surprising result. It plots the dispatch priorities for both
internal service class periods, and we can observe that the dispatch priority for the internal
service class $INTC is usually higher than the dispatch priority for $INTA. This is certainly not
the result we want, because the external service class SCLONG was created to give the
long-running transactions less access to the system resources than the short-running
transactions.

1 AS

64 AS64 AS
SCSHORT

(Imp=2, 75%<0.3s)

SCLONG
(Imp=4, 50%<15s)

$INTA

$INTC

41724

7253

3

Related
Samples

(not transactions)
Chapter 5. Setting goals 175

Figure 5-6 Dispatching priorities for internal service classes

So, why is this the case? The answer is simple. The internal service class with only one
address space requires much lower CPU than the service class with 64 address spaces, and
WLM always tries to optimize the exploitation of the existing system resources. We can also
observe that in cases where the service goals for SCSHORT are not met, WLM reverses this
decision (around 11:57), because the 64 address spaces have a higher contribution to the
overall goal achievement for SCSHORT.

Nevertheless, this situation is unexpected, and also shows that distinction is not always
beneficial. In case you do not know whether it is meaningful to distinguish different types of
transactions, use report classes and monitor the amount of ending transactions for each
report class. This gives you an idea as to whether a separation is meaningful. In this case, we
should merge the two service class definitions into one to let the percentile response time
process discard the outlying transactions (long-running transactions). However, we
recommend that you define two report classes (one for the short transactions and one for the
long-running transactions) to get and monitor the average response times of both types of
transactions.

5.2.4 Using execution velocity goals
Execution velocity goals define the amount of delay that is acceptable for the work, or, in
other words, how long we use a resource compared to the amount of time that we wait to use
it.
176 System Programmer’s Guide to: Workload Manager

Use velocity goals when other types of goals are inappropriate, such as:

� When WLM cannot obtain the transaction start and stop time, for example, there are many
started tasks.

� Workloads that do not have enough transactions completing for you to use a response
time goal. WLM needs to see at least three transactions complete within a 20-minute
interval to get useful statistics for a response time goal.

� Work that includes user think time, for example, when a program sends data back to the
requester and waits on a response before continuing.

A velocity goal disadvantage is that velocity goals are difficult to translate into real world
terms. It is reasonably easy to understand what a response time of 90% of transactions
completing in 0.75 seconds means. Users can typically tell the difference between that and
90% complete in 1.5 seconds. Can users tell the difference between a velocity of 60% and
30%? If they are equivalent to response times of 0.1 second and 0.2 second, probably not. If
they mean response times of 0.75 or 1.5 seconds, then yes. At times, it is difficult to judge
whether a velocity goal is acceptable, too high, or too low.

The achievable velocity for a workload depends greatly on the number of CPUs on the
system. Section 6.6, “Impact of the number of engines on velocity” on page 212 shows
examples of the effect.

On the 5 CPU machine with DB2 running in SYSSTC so it is at the highest priority, DB2
achieved a velocity of 74.9%. The same workload on the single CPU system only achieved
13.3%. On the 5-way machine, a goal of 60-70% might be appropriate. On the single
processor, that goal is much too high and 10% is more reasonable.

Considerations for using velocity goals
When using velocity goals:

� You usually cannot achieve an execution velocity goal above 90% because of reduced
preemption. Reduced preemption refers to the fact that a low-priority address space or
enclave can remain dispatched for a short amount of time even after a higher priority
address space or enclave becomes ready to execute. Another reason is that all the
SYSTEM and SYSSTC address spaces have a higher dispatching priority than any
velocity-type goal.

� Execution velocity depends on how many samples are collected for a service class and,
therefore, also on the amount of work running in a service class. Consider this example.
For simplicity, we use only CPU using and delay samples and assume that no other
samples have been collected:

– You have a service class with one unit of work. In this case, it is only possible to collect
40 samples in a 10-second period, because WLM samples the state of the work every
250 ms. Let us assume that we found the work ready and waiting for the CPU 20 times,
using the CPU 10 times and in an idle state 10 times. The idle samples are not
counted, so the achieved execution velocity for the work is 33.

– Now let us take a service class with 10 units of work. WLM can now collect 10 times
more samples in a 10-second period. For an execution velocity of 33, WLM now needs
200 delay samples and 100 using samples.

We can see that a small change for the service class with only 1 unit of work makes a big
difference to WLM. To accommodate these situations, WLM uses a minimum number of
samples on which to base its decisions. In order to obtain a minimum, WLM keeps a
history of samples and accumulates the number of history times until the minimum amount
is reached. This means that WLM needs to base its decisions for the service class with
Chapter 5. Setting goals 177

only one unit of work on a much longer time period than for the service class with 10 units
of work.

This also means that WLM can respond more quickly when there are multiple address
spaces in a service class. With a single address space, SRM needs several minutes to
collect enough samples. This is another good reason to combine little used service
classes with others.

� Certain work, such as VTAM and IRLM, spend the majority of time in the unknown state
and the idle state. Because of this, there might be few samples for using and delay (the
ones used for execution velocity calculation). As a consequence, the velocity can fluctuate
sharply. So, do not be surprised if you see an RMF report showing the execution velocity
of an address space, such as VTAM, with low figures. Velocity goals are normally
unsuitable for VTAM and IRLM.

� Many clients think in terms of high/medium/low velocities. Execution velocities depend on
various aspects and they can vary for many reasons. Therefore, we recommend that you
distinguish execution velocity goals of different service classes by at least a value of 10.
Everything lower than 10 does not make a big difference and cannot really be
distinguished by WLM from a measurement aspect.

� The same work often achieves different velocities if it is run multiple times. Many factors
affect the velocity that is achieved.

� When WLM calculates the execution velocity, it does not take into account the unknown
state. This includes the delays not tracked by SRM, such as locks or enqueues. Contrast
this with response time goals, where the time that corresponds to unknown samples is
included in the response time. In a resource-constrained system, service classes with
large unknown times with velocity goals exhibit performance indexes (PIs) that vary more
than other goal types, because the work is effectively managed on a subset of its total
delays. Try to use response time goals if possible, instead of execution velocity goals.

� Consider using low velocities, low importance levels, and Resource Groups for work with
the potential to dominate system resources.

� Reevaluate velocity goals when you turn on I/O priority queuing or batch initiator
management. These functions change the velocity calculation. RMF reports the projected
velocity values (migration velocities) to help you determine new goals before you migrate
to these functions.

� Reevaluate velocity goals when you change your hardware. In particular, moving to fewer,
faster processors requires changes to velocity goals.

5.2.5 Using the SYSSTC service class
The SYSSTC service class does not have a goal, but it runs with a fixed dispatching priority
above all of the WLM-managed work.

Use SYSSTC for work that is of high importance but uses little CPU. Address spaces, such
as VTAM, TCP/IP, and IRLM are good examples. System monitor address spaces might go
in SYSSTC as long as they are well behaved; that is, they only use CPU for short periods of
time. Multiple CPU systems might be able to tolerate occasional high CPU users in SYSSTC,
but this becomes critical with only one or two CPUs. On a single CPU system, all regular work
stops while a task in SYSSTC is using the CPU. WLM cannot adjust priorities to give regular
work more CPU at the expense of SYSSTC.

5.2.6 Using service class periods
Service class periods allow you to age work while it is running in the system. This is extremely
useful in cases where it is unpredictable how long work really runs in the system. It is a
178 System Programmer’s Guide to: Workload Manager

mechanism to protect your system from long-running work that consumes too many
resources because it runs at an importance level that is too high.

Figure 5-7 Ended transaction rate for TSO periods

To use service class periods efficiently, examine how many transactions end in each period
and how much CPU each period consumes, as shown in Figure 5-8 on page 180. Ideally, the
majority of all transactions end in the first period with only a small amount in the last period.

Figure 5-8 on page 180 shows a TSO service class with four periods. Observe that the bulk of
all transactions end in the first period, and only a small amount of transactions end in the
other three periods. Figure 5-8 on page 180 shows the CPU consumption in each period.
Now, we can observe the inverse picture. The first period consumes only a small amount of
CPU, while the last period, which runs at the lowest importance level, consumes a high
amount of CPU.

This example also shows an undesirable setup for the second and third periods. The second
period only consumes a small amount of CPU, and there are not many transactions ending in
this period. You can remove the second period and put it together with the third period. Many
examples show that two or three periods are sufficient in most cases to implement a
meaningful workload aging algorithm.

Ended Transaction Rate for TSO Periods

0

5

10

15

20

25

30

35

40

45

50

02
/0

1
23

.4
5.

00

02
/0

2
01

.4
5.

00

02
/0

2
03

.4
5.

00

02
/0

2
05

.4
5.

00

02
/0

2
07

.4
5.

00

02
/0

2
09

.4
5.

00

02
/0

2
11

.4
5.

00

02
/0

2
13

.4
5.

00

02
/0

2
15

.4
5.

00

02
/0

2
17

.4
5.

00

02
/0

2
19

.4
5.

00

02
/0

2
21

.4
5.

00

02
/0

2
23

.4
5.

00

02
/0

3
01

.4
5.

00

02
/0

3
03

.4
5.

00

02
/0

3
05

.4
5.

00

02
/0

3
07

.4
5.

00

02
/0

3
09

.4
5.

00

02
/0

3
11

.4
5.

00

02
/0

3
13

.4
5.

00

02
/0

3
15

.4
5.

00

02
/0

3
17

.4
5.

00

02
/0

3
19

.4
5.

00

02
/0

3
21

.4
5.

00

02
/0

3
23

.4
5.

00

02
/0

4
01

.4
5.

00

02
/0

4
03

.4
5.

00

02
/0

4
05

.4
5.

00

02
/0

4
07

.4
5.

00

02
/0

4
09

.4
5.

00

02
/0

4
11

.4
5.

00

02
/0

4
13

.4
5.

00

02
/0

4
15

.4
5.

00

02
/0

4
17

.4
5.

00

02
/0

4
19

.4
5.

00

02
/0

4
21

.4
5.

00

Period 1 Period 2 Period 3 Period 4
Chapter 5. Setting goals 179

Figure 5-8 CPU utilization for TSO periods

A simple way to check that you have set the proper durations into the service class definition
period is to analyze a RMF report class report (SGPER), as shown in Example 5-1.

Example 5-1 SGPER RMF Report

 PER IMPORTANCE PERF --TRANSACTIONS-- -------------RESPONSE TIME-------------- -EX VEL%- -CPU-- -EXE--
 INDX -NUMBER- -%- ------GOAL------ ---ACTUAL--- TOTAL GOAL ACT USING% DELAY%
 1 1 0.5 11292 94 00.00.00.150 90% 97.1% 91.7% 57.1 0.1 0.0
 2 2 0.6 564 5 00.00.00.750 90% 95.6% 76.1 19.6 9.4
 3 2 0.3 96 1 25 73.7 36.5 18.6
 TOTAL 11952 100

We use the TRANSACTIONS NUMBER (or percentage) column to analyze the transactions’
distribution of the different periods.

In Example 5-1, we see that 94% of the total amount of ended transactions were executed in
the first period, 5% in the second period, and only 1% in the third period.

Furthermore, for each period, we can correlate these numbers with the APPL % field in the
SCPER RMF report to check the amount of CPU per transaction period, which ideally is small
in the first period and higher in the other periods.

5.2.7 Using importance levels
The importance of a service class tells WLM which work to prefer and from which work to
take resources if resources become tight on the system. Ideally, your installation exploits all
existing importance levels, but in many cases, the work running on the systems only runs in
one or two importance levels. See Figure 5-9 on page 181.

CPU Utilization for TSO Periods

0

2

4

6

8

10

12

14

02
/0

1
23

.4
5.

00

02
/0

2
01

.4
5.

00

02
/0

2
03

.4
5.

00

02
/0

2
05

.4
5.

00

02
/0

2
07

.4
5.

00

02
/0

2
09

.4
5.

00

02
/0

2
11

.4
5.

00

02
/0

2
13

.4
5.

00

02
/0

2
15

.4
5.

00

02
/0

2
17

.4
5.

00

02
/0

2
19

.4
5.

00

02
/0

2
21

.4
5.

00

02
/0

2
23

.4
5.

00

02
/0

3
01

.4
5.

00

02
/0

3
03

.4
5.

00

02
/0

3
05

.4
5.

00

02
/0

3
07

.4
5.

00

02
/0

3
09

.4
5.

00

02
/0

3
11

.4
5.

00

02
/0

3
13

.4
5.

00

02
/0

3
15

.4
5.

00

02
/0

3
17

.4
5.

00

02
/0

3
19

.4
5.

00

02
/0

3
21

.4
5.

00

02
/0

3
23

.4
5.

00

02
/0

4
01

.4
5.

00

02
/0

4
03

.4
5.

00

02
/0

4
05

.4
5.

00

02
/0

4
07

.4
5.

00

02
/0

4
09

.4
5.

00

02
/0

4
11

.4
5.

00

02
/0

4
13

.4
5.

00

02
/0

4
15

.4
5.

00

02
/0

4
17

.4
5.

00

02
/0

4
19

.4
5.

00

02
/0

4
21

.4
5.

00

Period 1 Period 2 Period 3 Period 4
180 System Programmer’s Guide to: Workload Manager

Figure 5-9 Application utilization showing importance 1 overutilization

Figure 5-9 shows a typical picture of the work running in different importance levels on a
system. The majority of the work runs at importance 1 while there is some batch work running
at importance 6.

Figure 5-10 on page 182 shows a better usage of the available WLM importance levels.
Nevertheless, noticed that in this example a lot of work is running at the system level in
service class SYSSTC.

Application Utilization by Importance Level

0

100

200

300

400

500

600

700

800

900
 0

2
/0

1
/2

0
0

5
-2

3.
4

5
.0

0

 0
2

/0
2

/2
00

5
-0

1.
3

0
.0

0

 0
2/

0
2

/2
0

0
5-

03
.1

5.
0

0

 0
2/

0
2

/2
0

0
5-

05
.0

0.
0

0

 0
2

/0
2/

2
0

05
-0

6
.4

5
.0

0

 0
2

/0
2/

2
0

05
-0

8
.3

0.
0

0

 0
2

/0
2

/2
00

5
-1

0
.1

5
.0

0

 0
2

/0
2/

2
0

05
-1

2
.0

0
.0

0

 0
2

/0
2

/2
0

0
5

-1
3.

4
5

.0
0

 0
2

/0
2

/2
00

5
-1

5.
3

0
.0

0

 0
2/

0
2

/2
0

0
5-

17
.1

5.
0

0

 0
2/

0
2

/2
0

0
5-

19
.0

0.
0

0

 0
2

/0
2/

2
0

05
-2

0
.4

5
.0

0

 0
2

/0
2/

2
0

05
-2

2
.3

0.
0

0

 0
2/

0
3

/2
0

0
5-

00
.1

5.
0

0

 0
2

/0
3/

2
0

05
-0

2
.0

0
.0

0

 0
2

/0
3/

2
0

05
-0

3
.4

5
.0

0

 0
2

/0
3

/2
00

5
-0

5.
3

0
.0

0

 0
2

/0
3

/2
00

5
-0

7
.1

5
.0

0

 0
2/

0
3

/2
0

0
5-

09
.0

0.
0

0

 0
2

/0
3

/2
0

0
5

-1
0.

4
5

.0
0

 0
2

/0
3/

2
0

05
-1

2
.3

0.
0

0

 0
2/

0
3

/2
0

0
5-

15
.0

0.
0

0

 0
2

/0
3/

2
0

05
-1

6
.4

5
.0

0

 0
2

/0
3/

2
0

05
-1

8
.3

0
.0

0

 0
2

/0
3/

2
0

05
-2

0
.1

5.
0

0

 0
2

/0
3

/2
00

5
-2

2
.0

0
.0

0

 0
2

/0
3/

2
0

05
-2

3
.4

5
.0

0

 0
2

/0
4

/2
0

0
5

-0
1.

3
0

.0
0

 0
2

/0
4

/2
00

5
-0

3.
1

5
.0

0

 0
2/

0
4

/2
0

0
5-

05
.0

0.
0

0

 0
2/

0
4

/2
0

0
5-

0
6.

4
5

.0
0

 0
2

/0
4/

2
0

05
-0

8
.3

0
.0

1

 0
2

/0
4/

2
0

05
-1

0
.1

5.
0

0

 0
2

/0
4

/2
00

5
-1

2
.0

0
.0

0

 0
2

/0
4/

2
0

05
-1

4
.3

0
.0

0

 0
2

/0
4

/2
0

0
5

-1
6.

1
5

.0
0

 0
2

/0
4

/2
00

5
-1

8.
0

0
.0

0

 0
2

/0
4

/2
00

5
-1

9
.4

5
.0

0

 0
2/

0
4

/2
0

0
5-

2
1.

3
0

.0
0

 0
2

/0
4

/2
0

0
5

-2
3.

1
5

.0
0

System Importance 1 Importance 2 Importance 3 Importance 4 Importance 5 Discretionary
Chapter 5. Setting goals 181

Figure 5-10 Application utilization showing a better use of importance levels

5.2.8 Using discretionary goals
Discretionary goals are for work that is processed using resources that other work does not
require to meet the other work’s goals. Discretionary work has no specific business goals
attached to it.

Discretionary work can make it easier to manage an extremely busy system. A z/OS system
can run at 100% CPU busy without problems, as long as there is work that can wait during
the peaks of more important work. Defining discretionary work allows WLM to know
immediately which work must donate resources when an important workload spikes without
having to wait for a WLM interval and going through the normal donor/receiver logic. In fact,
WLM does not have to do anything, because SRM and the normal dispatch priorities handle
discretionary work.

For discretionary work to function properly, the percentage of discretionary work needs to be
high enough to buffer the normal fluctuations of the nondiscretionary work. If there is
sufficient nondiscretionary work to drive the system to 100% busy for long periods of time,
then discretionary receives very poor service, and you do not get the benefit of having work
that can immediately donate resources.

If you have work in the system that should always be the donor when more important work
needs CPU immediately, then that work is a good candidate for discretionary work. Long
running, resource intensive batch jobs are a good example.

Application Utilization by Importance Level

0

100

200

300

400

500

600

700
 0

2
/0

1
/2

0
0

5
-2

3.
4

5
.0

0

 0
2

/0
2/

2
0

05
-0

1
.3

0.
0

0

 0
2

/0
2

/2
00

5
-0

3
.1

5
.0

0

 0
2/

0
2

/2
0

0
5-

0
5.

0
0

.0
0

 0
2

/0
2

/2
0

0
5

-0
6.

4
5

.0
0

 0
2/

0
2

/2
0

0
5-

08
.3

0.
0

0

 0
2

/0
2

/2
00

5
-1

0
.1

5
.0

0

 0
2

/0
2

/2
0

0
5

-1
2.

0
0

.0
0

 0
2

/0
2/

2
0

05
-1

3
.4

5.
0

0

 0
2

/0
2

/2
00

5
-1

5
.3

0
.0

0

 0
2/

0
2

/2
0

0
5-

1
7.

1
5

.0
0

 0
2

/0
2

/2
0

0
5

-1
9.

0
0

.0
0

 0
2/

0
2

/2
0

0
5-

20
.4

5.
0

0

 0
2

/0
2

/2
0

05
-2

2
.3

0
.0

0

 0
2

/0
3

/2
0

0
5

-0
0.

1
5

.0
0

 0
2

/0
3/

2
0

0
5-

02
.0

0.
0

1

 0
2

/0
3

/2
00

5
-0

3
.4

5
.0

0

 0
2/

0
3

/2
0

0
5

-0
5.

3
0

.0
0

 0
2

/0
3

/2
00

5
-0

7.
1

5
.0

0

 0
2/

0
3

/2
0

0
5-

09
.0

0.
0

1

 0
2

/0
3

/2
0

05
-1

0
.4

5
.0

0

 0
2

/0
3

/2
0

0
5

-1
2.

3
0

.0
0

 0
2

/0
3

/2
0

0
5-

14
.1

5.
0

0

 0
2

/0
3

/2
00

5
-1

6
.0

0
.0

0

 0
2

/0
3/

2
0

05
-1

7
.4

5
.0

0

 0
2

/0
3

/2
00

5
-1

9.
3

0
.0

0

 0
2/

0
3

/2
0

0
5-

21
.1

5.
0

0

 0
2

/0
3/

2
0

05
-2

3
.0

0
.0

0

 0
2

/0
4

/2
0

0
5

-0
0.

4
5

.0
0

 0
2/

0
4

/2
0

0
5-

02
.3

0.
0

0

 0
2

/0
4

/2
00

5
-0

4
.1

5
.0

0

 0
2

/0
4/

2
0

05
-0

6
.0

0
.0

0

 0
2

/0
4

/2
00

5
-0

7.
4

5
.0

0

 0
2/

0
4

/2
0

0
5-

09
.3

0.
0

0

 0
2

/0
4/

2
0

05
-1

1
.1

5
.0

0

 0
2

/0
4

/2
0

0
5

-1
3.

0
0

.0
0

 0
2/

0
4

/2
0

0
5-

14
.4

5.
0

0

 0
2

/0
4

/2
00

5
-1

6
.3

0
.0

0

 0
2

/0
4/

2
0

05
-1

8
.1

5
.0

0

 0
2

/0
4

/2
00

5
-2

0.
0

0
.0

0

 0
2/

0
4

/2
0

0
5-

21
.4

5.
0

0

 0
2

/0
4/

2
0

05
-2

3
.3

0
.0

0

System Importance 1 Importance 2 Importance 3 Importance 4 Importance 5 Discretionary
182 System Programmer’s Guide to: Workload Manager

When discretionary work receives too little service
If discretionary work receives too little service, there are two possible solutions:

� Use a service class with a low importance goal instead of discretionary. However,
depending on your other workloads, this service class still might not receive adequate
service.

� Move more work into discretionary. If only a small percentage of your work is
discretionary, it is likely to experience problems when the system is busy. By moving more
low importance work from other service classes into discretionary, you might be able to
reduce the amount of nondiscretionary work enough that discretionary as a whole
receives better service. This also allows your more important work to benefit from the
flexibility that discretionary provides.

Capping overachieving work
When nondiscretionary work is overachieving its goals, WLM can cap it to give more service
to discretionary work.

WLM only steals resources from other work that meets the following criteria:

� It is not part of a Resource Group.
� It has a velocity goal of not more than 30 or a response time goal of over one minute.
� The PI of the service class is less than 0.71.

When the conditions are met, this overachieving work is capped and the freed resource is
used to execute discretionary work. The amount of resource stolen is very small, because
WLM keeps the PI of the capped work between 0.71 to 0.81.

It is up to your installation whether you want to define discretionary goals. If you have work
that fits into this criteria, then there is no harm in using discretionary goals. If you do not like
the capping algorithm that is used with discretionary goals and you want to protect your
low-priority work from being capped, then you can easily negate this by defining a Resource
Group with null minimum and maximum values. You must assign this Resource Group to the
service classes that you want to protect from capping.

5.2.9 Using report classes
One important activity is defining your report classes. Report classes allow the definition of
sufficient granularity to obtain more detailed information for analysis. See Figure 5-11 on
page 184.
Chapter 5. Setting goals 183

Figure 5-11 Report Classes definition

Figure 5-11 shows two typical ways to define report classes relative to workloads, service
classes, and classification rules in a service definition. The table on the left uses distinct
report classes to group work together that is related because of similar business or
installation characteristics. The table on the right uses report classes to distinguish all
classification rules and to provide more granular characteristics of the workload. Many clients
define report classes like the example on the left; however, the example on the right provides
you a better understanding of how different classifications are attributed to a service class.
The example on the right also provides you a better understanding of which parts of a
workload might grow and which might shrink. You can then combine report classes for your
reporting according to your business requirements.

We advise you to use report classes extensively. They are the base for a deeper
understanding of the work running in service classes. Also, starting with z/OS 1.3, report
classes provide the same granularity as service classes. Finally, one of the greatest strengths
of WLM is its ability to monitor the work running in the system, and report classes are the way
to make this visible for your installation.

5.2.10 Using Resource Groups
A Resource Group is an amount of CPU capacity across the sysplex that you can assign to
one or more service classes. You can use a Resource Group to:

� Limit the amount of processing capacity available to one or more service classes.

� Set a minimum amount of processing for one or more service classes in the event that the
work is not achieving its goals.

You specify the minimum and maximum amount of capacity in unweighted CPU service units,
LPAR share, or percentage of a single CPU. The minimum and maximum capacities apply to
all systems in a sysplex. You can assign only one Resource Group to a service class. You
can assign multiple service classes to one Resource Group. You can define up to 32
Resource Groups in a service definition.

11

R210

9

R28E

R17DY

6

5

4C

R13B

R22

R11AX

Report
Class

Classification
Rule

Service
Class

Workload

11

R210

9

R28E

R17DY

6

5

4C

R13B

R22

R11AX

Report
Class

Classification
Rule

Service
Class

Workload

R1111

R1010

R99

R88E

R77DY

R66

R55

R44C

R33B

R22

R11AX

Report
Class

Classification
Rule

Service
Class

Workload

R1111

R1010

R99

R88E

R77DY

R66

R55

R44C

R33B

R22

R11AX

Report
Class

Classification
Rule

Service
Class

Workload
184 System Programmer’s Guide to: Workload Manager

When you use a Resource Group, remember that:

� If a Resource Group is not meeting its minimum capacity and work in that Resource Group
is missing its goals, WLM attempts to give CPU resources to that work, even if the action
causes more important work (outside the Resource Group) to miss its goal.

� If work in a Resource Group is consuming resources above the specified maximum
capacity, the system throttles the associated work to slow down the rate of resource
consumption. The system can use a number of ways to do this. It can swap the address
space out, change its dispatching priority, or cap the amount of service units that can be
consumed.

If you use Resource Groups, it might be advantageous to change the CPU and SRB user
coefficients to 1. If you do not use Resource Groups, continue using the current user
coefficients. Migrate to the final set of coefficients prior to migrating to goal mode.

For a more detailed discussion of Resource Groups, refer to 4.2.7, “Resource Group
specification” on page 127.

A Resource Group is an optional function. Unless you have a special need to limit or protect
processor capacity for a group of work, skip defining a Resource Group and just let WLM
manage all of the processor capacity to meet performance goals.

5.2.11 Using CPU and storage critical
If you use CPU or storage critical, be aware that this only protects your work for the specific
resource. You still need a meaningful goal for your work for other cases that can happen in
the system. The following example demonstrates what can happen if you do not have a
meaningful goal for other work in the system.

In Figure 5-12 on page 186, we defined a service class with importance 1 and CPU critical.
We set the goal to an execution velocity goal of 1, and this was the only importance 1 work in
the system. Now during normal operations, the CPU critical option ensures that the dispatch
priority of the work is always above all other work in the system, but there are situations
where this is insufficient. At a certain point in time, it became necessary to restart the work in
this service class due to an application failure (1 on chart). In addition, the system ran in a
stress situation and the CPU resource became constrained. WLM now looked for a way to
help the system, and one of the main controls in such cases is to swap out work in order to
regain system resources. Because of the restart, the address spaces of the work running in
the importance 1 service class became swappable, and WLM chose this address space for
swap out (2 on chart). It took a long time for the address space to get into the system again (3
on chart), because the goal was so low and the performance index of the service class was
always below 0.15. Only over time, WLM increased the multiprogramming level (MPL) target
to let the address spaces back.
Chapter 5. Setting goals 185

Figure 5-12 CPU critical scenario

To explain Figure 5-12:

� MPL delays are in the right Y-axis and are expressed in number of samples.
� MPL In is the number of address spaces that must always stay in storage (strg).
� MPL Out is the maximum number of address spaces that can stay in strg.

When the Ready Users number is greater than the In Storage Users number, you can then
assume that the delta is SWAPPED OUT USERS. This situation can be the cause for the
MPL Delay.

5.3 Managing service definitions
It is important to develop your own operational procedures when it comes to updating and
installing your service definitions. A service definition can be extracted to a partitioned data
set (PDS) and can be updated by multiple people at the same time. Also, if you saved to
PDS, edited this service definition, and then did an install of the service definition, you
overlaid the data in the WLM CDS. The previous service definition no longer exists. If you
ever need to retrieve the old service definition, you must extract the current definition, undo
the changes made, and then reinstall the definition.

To ensure data integrity, be sure that the service definition changes are always made to the
latest service definition. The best way to do this is to always extract the service definition from
the WLM CDS. We also suggest that you have one data set naming convention for your
service definition. You also need to create your backup procedures to ensure that you can
revert back to the original service definitions if needed.

MPL Adjustements
Service Class: Importance 1, Execution Velocity Goal = 1, CPU Critical

40

45

50

55

60

65

70

75

80

85

90

0

200

400

600

800

1000

1200

1400

1600

1800

MPL In MPL Out Ready Users In Storage Users MPL Delay

1

2

3

186 System Programmer’s Guide to: Workload Manager

Here is a sample procedure to manage your service definition:

1. Define your naming convention for your service definition, for example,
HLQ.WLMPOLxx.Vmmddyy.

2. Extract your service definition from the WLM CDS. This PDS serves as your current
backup. Give this PDS a name such as HLQ.WLMPOL00.V032105.

3. When you need to update your service definition, extract the definition to another PDS. All
changes in the service definition will be stored in this new PDS. So, at this stage, there are
two definition PDSs in the system. For example, the new PDS has a name of
HLQ.WLMPOL01.V040305 and the original is HLQ.WLMPOL00.V032105.

4. Update your service definition. Use the notepad facility in the menu bar to add a change
record for the service definition.

5. Install the service definition into the WLM CDS.

6. Exit the WLM ISPF application.

This is just a sample procedure. You can tailor one according to your local procedures.

5.3.1 Revisiting service definitions
Revisiting a service definition comprises the following steps:

1. Determine whether your classification rules still work: whether all of your service classes
are still used and whether the usage of your service classes has changed.

2. Determine whether the achievement of your goals still falls in the range you decided for
your installation. Do this regularly in order to avoid problems for your installation.

3. Determine whether Application Environment and scheduling environment definitions are
still appropriate.

5.3.2 Reevaluating service definition
View this task as a consequence of revisiting the service definition:

1. If classification rules do not match any longer or if the workload has changed, it might be
necessary to change the rules, remove service classes, and potentially add new service
classes.

2. If goals are not in the expected range or workloads do not perform as expected, you might
need to tune the goal definitions.

3. If any definition in the service definition becomes obsolete or if you determine that the
service definition does not provide enough information, adjust the definitions.

5.3.3 When things are not working
The objective of setting up a WLM policy is to specify how resources should be allocated
when they are in short supply. When things work properly, and you have a mix of different
work in the system, the system should be able to run smoothly even at 100% busy for periods
of time. The key is to know which work can be delayed when things get busy.

Setting up a single CPU system is more difficult than multiple CPU systems. On a single CPU
system, the CPU is 100% busy for short periods of time even when the average utilization is
low, which can cause problems such as erratic response times. A single CPU system is more
sensitive to problems with the WLM policy.

You need to look at these areas when you start having problems when the system is busy:
Chapter 5. Setting goals 187

� Try to ensure that even your lowest priority workloads get at least some service. When
work receives no service at all, you start to see additional problems. For example, a job
needs some CPU service to respond to the cancel command. If a job receives no CPU at
all, you will probably have problems cancelling the job.

Too many low importance service classes can cause this problem. The classes at the end
of the queue might never get service. The best solution is to combine service classes so
that there is a reasonable amount of work running in each service class. For example, if
you have five low importance service classes, you might find the fourth and fifth do not get
any service. If you combine them all into one service class (or make them discretionary),
they all share the service that was received by the first three service classes.

� Make sure that your goals are reasonable. If your goals are too high, WLM might waste
time on high importance workloads that are really acceptable, instead of helping lower
importance work that needs attention.

Goals that you set too high can result in erratic performance, because WLM makes
changes to try to meet the goals. Ideally, you want WLM to find a setting that meets all
your goals and only changes things when the workload changes. This results in the most
consistent and predictable performance.

� Remember that the system is finite. It can seem wrong to take resources from more
important work and give them to less important work. However, that is often necessary to
allow the less important work to perform adequately. As long as the more important work
achieves its business objectives, it makes sense to do it. This is what WLM is designed to
do.

� Do not be afraid to change multiple things at once if many service classes are not meeting
their goals. System programmers tend to be cautious, and they like to change one thing at
a time and observe the results. However, the performance of all of the service classes in a
system is interrelated, and if you miss many goals, you might not be able to detect a result
from changing a single goal. You cannot tell whether the change was beneficial or not.

It is often better to make relatively large adjustments until you get close to what you need.
When the WLM policy is mostly working, you can make smaller adjustments to fine-tune
the system.

� There is no single perfect policy. The WLM policy does not directly change the priorities of
work. WLM uses the policy to measure how well the work is running and work out whether
changes are necessary. In many cases, different policies can give much the same result.
It often does not make sense to obsess over small details.

Conversely, sometimes a small change can make a big difference. If you have a service
class with period 1 duration of 100000, and a lot of work in the service class was
completing in just over 100000 service units, a small increase in the duration might make a
dramatic difference to the performance by allowing the work to finish in period 1.
188 System Programmer’s Guide to: Workload Manager

Chapter 5. Setting goals 189

190 System Programmer’s Guide to: Workload Manager

Chapter 6. Batch considerations

This chapter discusses practical recommendations to manage batch workload with Workload
Manager (WLM). It covers the following subjects:

� WLM-managed initiators: How they work and the latest enhancements
� Types of goals that you need to use for batch jobs
� How to classify the batch environment
� Usage of policy overrides and Resource Groups

6

© Copyright IBM Corp. 2005, 2006, 2007. All rights reserved. 191

6.1 General considerations
Usage of WLM-managed initiators is a major part of your considerations for batch workload.
Classification and type of goal for a batch job are dependent on the type of initiator you use.
So, before giving recommendations about service class goals and classification rules, we
describe in detail what these new initiators are and how they work.

This chapter also discusses the scheduling environment and the latest Tivoli Workload
Scheduler for the z/OS (TWS) enhancement.

6.1.1 WLM-managed initiators
WLM manages initiators based on the goals specified in their service class period. In z/OS
1.8, IBM has further enhanced this functionality by extending the scope of batch management
to be able to optimize the distribution of the batch workload across a sysplex. This
functionality is called improved batch initiator balancing.

JES2 attempts to use approximately the same percentage of active WLM-managed initiators
in each service class on each system. JES2 does not try to use the same number of initiators
on each system; the number used is in proportion to the number started on each system. If
WLM has started 20 initiators on system A and 10 on system B, and 15 jobs are submitted,
10 should run on system A and 5 on system B.

This balancing only comes into effect when there are idle initiators; most commonly when
other jobs have finished but the initiator is still active. If there are no free initiators, jobs run
wherever another job finishes, or WLM starts new initiators.

Initiator balancing does not necessarily keep the number of initiators the same, or keep all
systems equally busy. It does stop one system from always selecting the work when there are
free initiators elsewhere, which gives WLM a better picture of the workload when it is deciding
whether to start or stop initiators.

You can display JES2 targets using the $D SRVCLASS command. Example 6-1 shows the
output of the command. We can see how many initiators are started and in use for the service
class and the JES2 targets for the number of jobs on each system. We can see that the
targets are in proportion to the number of initiators that WLM has started on each system.

Example 6-1 $D SRVCLASS command

$DSRVCLASS(BATCHLOW),LONG
$HASP889 SRVCLASS(BATCHLOW)
$HASP889 SRVCLASS(BATCHLOW) QAFF=(ANY)TYPE=DYNAMIC,
$HASP889 COUNTS(SC63)=(INITS=24,
$HASP889 ACTIVE=16,TARGET=17),
$HASP889 COUNTS(SC64)=(INITS=16,
$HASP889 ACTIVE=11,TARGET=10),
$HASP889 MASCOUNT=(INITS=40,
$HASP889 ACTIVE=27)

How WLM batch initiator management works
On the job class basis, you can decide if the initiators should be managed by JES or by WLM.
If JES-managed, there is a fixed number of initiators available, each one assigned to one or

Note: The improved batch initiator balancing requires all systems at z/OS 1.8 or higher. If
you have pre-z/OS 1.8 systems, JES2 preferably starts jobs on the submitting system.
192 System Programmer’s Guide to: Workload Manager

more job classes. Incoming jobs can be started as long as there are idle initiators available for
that specific job class. In the WLM-managed environment, the number of initiators is
controlled by WLM, and the initiators are assigned to service classes. WLM has several
criteria for starting and stopping initiators:

� New initiators are started for a service class if there is a need to achieve the goals of that
service class. To determine this, WLM takes the queue delay time of jobs waiting for
execution while checking during the 10-second policy adjustment cycle, and it considers
which resources are required for the workload belonging to a service class to be able to
achieve the goal. If WLM determines that the reduction of queue delay time has the best
effect, WLM starts new initiators for that service class. And, WLM starts those initiators
first on systems with the lower load. For a system that runs on 100% CPU usage, new
initiators are only started if there are jobs on the queue in a service class with an
importance that is high enough to displace work with a lower importance that is already
running on the system.

� Another criterion is independent of the goals. If there are jobs waiting in the queue to be
started and a system has enough unused capacity in terms of available CPU and memory
to take at least one of those jobs, an additional initiator is started on that system.

� There are also additional criteria for starting initiators. For example, if jobs are waiting that
have system affinity to one or more systems, but no initiators are available
for them, one initiator is started for those jobs.

� WLM also stops initiators if one of these situations occurs:

– If there are, over time, significantly more initiators available for a service class than
needed (not used).

– If a system is so heavily loaded that there is a shortage of available CPU or memory
capacity. WLM keeps at least one initiator per service class on each system for at least
one hour.

If there is a constrained system that has initiators for the service class of the waiting batch
work, and there is at least one other system that has enough available CPU and memory to
take over a waiting job of the average size of that service class, initiators are moved from the
constrained system to the unconstrained one.

At every 10-second interval, WLM performs the following check with the assumption that
there are jobs waiting in the queue:

� WLM performs a check to verify whether the system is constrained. WLM considers a
system constrained when the CPU consumption is more than 95%, based on a
one-minute average. If a system is constrained, the service class with the lowest
importance that has waiting jobs and more than one initiator assigned is identified as a
candidate for stopping an initiator.

� If this happens, WLM checks the other systems. If WLM finds at least one system that has
enough memory and low enough CPU usage that the system remains unconstrained after
taking over the job of the identified service class, one initiator on the constrained system is
stopped.

� If more than one system is over 95% CPU-utilized, only the most constrained system is a
candidate for reducing one initiator per interval.

� On unconstrained systems, up to five new initiators can be started per 10-second interval
if there are enough CPU and memory available.

� WLM takes special care if there are jobs waiting that have system affinity for constrained
systems and, therefore, WLM cannot direct them to unconstrained systems. In this case,
the reduction of initiators is limited in order to maintain enough initiators for those types of
jobs.
Chapter 6. Batch considerations 193

The balancing mechanism shows that there is no one-to-one correlation between initiators
stopped on one system and initiators started on another one. It is an asynchronous process
during which initiators are reduced on constrained systems and more initiators are started on
unconstrained systems. The action of stopping an initiator is not instantaneous: Stopping an
initiator is pending until the job that is running finishes.

Batch initiator management example
We performed a simple test to demonstrate the management of initiators.

We ran a steady stream of jobs in the system. The jobs were short-running jobs so there were
always jobs ending and new jobs starting. The jobs were all submitted from the same system,
SC63. After a short time, WLM started enough initiators for all the jobs to run. The jobs were
evenly spread between SC63 and SC64.

After the jobs were running, we submitted enough jobs with heavy CPU utilization to drive the
CPU usage on SC63 to 100%. Over the next few minutes, we saw the number of jobs running
on SC63 decrease until there were none of the short-running sample jobs running there, and
they were all running on SC64.

We then cancelled the large jobs running on SC63. A few jobs started running there
immediately using some of the initiators that were freed by the large jobs, but most jobs kept
running on SC64, which still had most of the initiators. The system kept running like this for
some time, because SC64 was not busy enough for WLM to actively move initiators. We found
that the number of jobs on each system did even out over time, but this is probably dependent
on the characteristics of the work.

JES2 service class management
z/OS 1.8 added the capability to control JES2 job selection by service class. For example,
you might want to stop work in a service class for long-running work from running on a
particular system if you are planning to shut that system down.

You can stop work from running in a service class using the $P SRVCLASS or $T SRVCLASS
commands. Use the commands $S SRVCLASS or $T SRVCLASS to restart work.

The service class names are the same as the WLM service classes.

Types of service classes
JES2 tracks two types of service classes: dynamic service classes and permanent service
classes.

Dynamic service classes are created when a job enters the system with a service class that is
not currently known. Dynamic service classes are deleted after a period of time when there
are no pre-execution jobs for that service class.

Permanent service classes are created using the $ADD SRVCLASS or $T SRVCLASS
commands. Permanent service classes are no different than dynamic service classes, except
that they are not deleted after a period of inactivity. This avoids the problem where you want
to stop future work from running in a service class, but JES2 has deleted the service class
because it has had no recent work.

A permanent service class can be converted to a dynamic service class using the
$T SRVCLASS command when the class is no longer required. JES2 will delete it after a
period of inactivity.
194 System Programmer’s Guide to: Workload Manager

Service class example
Examples of these types of service classes are:

1. Display a service class that is currently unknown to JES2:

$DSRVCLASS(BATCHLOW)
$HASP003 RC=(52),D
$HASP003 RC=(52),D SRVCLASS(BATCHLOW) - NO SELECTABLE
$HASP003 ENTRIES FOUND MATCHING SPECIFICATION

2. Add the service class:

$ADD SRVCLASS(BATCHLOW)
$HASP889 SRVCLASS(BATCHLOW)
$HASP889 SRVCLASS(BATCHLOW) QAFF=(ANY)TYPE=PERMANENT,
$HASP889 MASCOUNT=(INITS=0,ACTIVE=0)

The service class name must be an existing WLM service class.

3. Stop work in the service class from running on this system:

$PSRVCLASS(BATCHLOW)
$HASP889 SRVCLASS(BATCHLOW)
$HASP889 SRVCLASS(BATCHLOW) QAFF=(SC64,SC65,SC70)
$HASP889 TYPE=PERMANENT

This command is equivalent to using the $T SRVCLASS command to remove the current
system from the QAFF list.

4. Allow work to run on this system again:

$SSRVCLASS(BATCHLOW)
$HASP889 SRVCLASS(BATCHLOW) QAFF=(ANY)TYPE=PERMANENT

5. Set the service class to dynamic so JES2 can delete it if it is not needed:

$T SRVCLASS(BATCHLOW),TYPE=DYNAMIC
$HASP889 SRVCLASS(BATCHLOW)
$HASP889 SRVCLASS(BATCHLOW) QAFF=(ANY)TYPE=DYNAMIC,
$HASP889 MASCOUNT=(INITS=0,ACTIVE=0)

Jobs with system affinity
APAR OA10814 solves the problem occurring with WLM-managed initiators and jobs with
system affinity. Before this APAR, WLM, before starting new initiators, performed a check to
verify if enough initiators were already available in the sysplex for the service class. The
check was performed on the overall configuration, not just on each image to verify that in
case of jobs with affinity, this particular image had initiators to satisfy the batch work. Jobs
with system affinity could wait a long time on the queue before getting an initiator, because
the sum of idle initiators over the sysplex was big enough, but these initiators were idle on
other systems. With this APAR, WLM now checks that idle initiators can be used by jobs with
system affinity and, if not, it starts new initiators on the right image.

Considerations for multiple JES2 MAS complexes in a sysplex
There is no requirement for all the systems in the sysplex to be in the same MAS complex.
However, the WLM policy is sysplex-wide and independent of the JES2 member or MAS
complex.

� Jobs with the same classification attributes (job class and so on) are assigned the same
service class, no matter which MAS they are in unless the subsystem collection name is
included in the classification attributes.

� The service class determines the goal, regardless of which MAS they are in.
Chapter 6. Batch considerations 195

� Limiting the number of jobs in execution by class through the JOBCLASS(c) XEQCOUNT
parameter is only MAS-wide, not sysplex-wide.

Operational changes
While WLM-managed initiators reduce the need to actively manage job initiation, there are
still constraints within which WLM must operate. Because operators lose the ability to control
the maximum number of WLM-managed initiators or to force jobs into immediate execution
by starting more initiators, WLM provides mechanisms to do so that apply to WLM-managed
initiators. Likewise, the need for orderly shutdown remains even when you use
WLM-managed initiators.

Limiting the number of jobs
Most often the need to restrict the number of concurrently executing jobs derives from either a
physical limitation such as the number of tape drives or from a service level agreement (SLA)
that specifically limits the number of jobs that an organization can run concurrently. Typically,
this is accomplished by limiting the number of initiators started with the restricted job class in
their selection list. This model is now implemented for WLM-managed and JES-managed
initiators by specification of JOBCLASS(x) XEQCOUNT=(MAXIMUM=5) in the JES2
initialization deck or via the $TJOBCLASS(x) command. Starting with z/OS 1.8, you specify
this count at the member level JOBCLASS(Z),XEQMEMBER(SYSA)=MAX=3.

Forcing immediate initiation
Because you cannot use the $SI command to start an initiator for a WLM-managed job class,
the $SJ command enables the operator to force immediate initiation of a specific
WLM-managed job regardless of goals or the job's position on the job queue. WLM starts an
initiator on the system that is most likely to have enough CPU capacity to support additional
work. This initiator selects the specific job targeted by the $SJ command and initiates that job.
When the job completes, the initiator terminates. Because the initiator processes only the
targeted job, it does not give the operator the capability to manually add long-term initiator
capacity to a job scheduling environment.

Stopping initiation
In order to prepare for hardware or software maintenance, you might need to quiesce a
system. Because WLM-managed initiators cannot be stopped via $PI, a new command,
$P XEQ, provides this purpose. $P XEQ announces your intent to perform an orderly
shutdown of JES2. JES-managed initiators cease selecting new work; WLM-managed
initiators drain and then terminate. $S XEQ allows selection of new work, and if running in
goal mode with WLM-managed initiators, it allows WLM to create initiators again. Both
commands are single-system in scope; when WLM-managed initiators are used, WLM will
likely start initiators elsewhere to compensate for the loss of capability on the system that is
quiesced.

Stopping a service class
You can use the $P SRVCLASS or $T SRVCLASS to prevent work in a particular service
class from starting on a particular system. This can be useful to avoid starting long-running
jobs when planning a system shutdown. See “JES2 service class management” on page 194
for an example.

Tip: If you are using WLM-managed initiators, do not classify the batch work from more
than one MAS into the same WLM service class. This can lead WLM to start new initiators
for a service class in the wrong MAS.
196 System Programmer’s Guide to: Workload Manager

6.1.2 Scheduling environment
Similar to, but independent from member affinity, a job might also be assigned to a scheduling
environment to ensure that it executes on the members in the MAS that have the required
resources or specific environmental states. The states can be associated with hardware
resources such as a vector facility, to an address space such as DB2, or to an abstract state
such as time of day (shift) or day of the week. The resources and their required states are
defined when adding a scheduling environment to the WLM policy. The required state of the
resource can be either on or off. The scheduling environment is enabled on a System when
the resources belonging to it are in the required state defined in the WLM policy. You can
change the state of a resource with the modify WLM command.

You can then specify the environment with the SCHENV= keyword parameter on the JOB
statement, or through an installation exit. Environments can also be assigned via a
JOBCLASS default or using the $T Job JES2 command. Scheduling environments are
installation-defined sixteen-character names that can be available on any of the systems in
the sysplex or none of the systems.

The scheduling environment is validity-checked by the converter and must be defined to
workload management, or else the jobs fail with a JCL error. JES2 detects the availability of
scheduling environments on each member and allows an initiator to select jobs only if the
specified scheduling environment is available. This is true for both JES2-managed initiators
and WLM-managed initiators. In addition, any member affinity specified through the
SYSAFF= parameter as well as the job class and initiator class must match.

6.1.3 TWS integration with WLM
With PK08998, PK08999, and PK09001 APARs, TWS enhances its integration with
WLM with the final objective of reducing the cost of JCL management and job monitoring
associated with WLM scheduling environments in your installation. In fact, with this
maintenance level:

� There is no longer a need to manually tailor each JCL any time that you need to associate
a scheduling environment with a job or change an existing association:

– Granularity of association is possible due to definition at the operation level (via ISPF
panel or Programming Interface Facility ((PIF)).

– Global changes for groups of jobs are possible due to Mass Update and Batch Loader
support.

� Fast detection of scheduling environment problems related to TWS submitted jobs is
available:

– The new extended status, Waiting for scheduling environment, allows you to track
problems with scheduling environments via ISPF dialogs or PIF-based Current Plan
queries.

– Filtering on job status by using the scheduling environment definition allows you to
easily identify all operations waiting for a specific scheduling environment availability.

� The automatic resubmitting of jobs waiting on scheduling environment availability is
implemented.

The new event tracking on scheduling environment status generated by Trackers allows
the Controller scheduler to automatically retry the submission of operations ready but
waiting for scheduling environment availability.
Chapter 6. Batch considerations 197

� Multiple sysplex support and considerations:

In a multiple sysplex environment within WLM, you can define the same scheduling
environment name for more than one sysplex (that is, scheduling environment SE1
can be defined both in SysplexA and in SysplexB, however, they are separate objects,
each with a different status).

You are not required to provide all scheduling environment definitions and sysplex
associations with the TWS product, because these are detected automatically after
you have coded the OPCOPTS SYSPLEXID parameter in the Controller and Trackers.

– The monitoring status check of a job scheduling environment is done at Tracker level
and using the WLM macros with a scope of sysplex-wide, allowing the support of the
sysplex to be handled by one Controller. (A similar check done at Controller level
would have been limited to the Controller sysplex scope only.)

– Monitoring the status of the scheduling environment and the events that are sent to the
Controller also carries the indication from which sysplex they are coming according to
the Tracker that generates them.

For multiple sysplex support, the OPCOPTS SYSPLEXID parameter has been added
by this maintenance level:

SYSPLEXID (nn)

where nn is an integer number from 1 to 65000 and the default is 1.

This parameter applies both to Trackers and Controllers.

The following scenario, related to the configuration illustrated in Figure 6-1 on
page 199, provides an example of this function.

Suppose the same scheduling environment, DB2UP, is defined on both Sysplex1 and
Sysplex2, and initially is not available on both sysplexes:

• A job is submitted with SCHENV=DB2UP on Tracker T3 on system D, Sysplex1.

• Tracker T3 checks whether the scheduling environment DB2UP is available, and
sends the event submit failed to the Controller, providing the sysplex name
(Sysplex1) and the scheduling environment name.

• The Controller puts the operation in ready status, waiting for the scheduling
environment to become available, and stores the scheduling environment name,
DB2UP, and the sysplex ID of 1.

• DB2UP becomes available on Sysplex2, and Tracker T5 of Sysplex2 sends an event
to the Controller to inform it.

• The Controller checks the operation ready waiting for scheduling environment
against the scheduling environment name DB2UP and Sysplex ID 2, and finds no
match.

• DB2UP became available on the image B in Sysplex1 and Tracker T4 of Sysplex1
sends an event to the Controller to inform it.

• The Controller checks the operation ready waiting for the scheduling environment
against the scheduling environment name DB2UP and sysplex ID 1 and finds a
match. The operation is resubmitted.
198 System Programmer’s Guide to: Workload Manager

Figure 6-1 Multiple sysplex configuration with JESplex matching the sysplex boundaries

TWS is also maximizing the usage of system resources and improving the definition of
workload management for better load balancing and service level handling. In fact:

� All jobs that need to meet a predefined service goal or that require a specific set of
resources to be available can have an associated scheduling environment predefined as
part of the workload planning process.

When using WLM-controlled initiators, WLM determines in which logical partition (LPAR)
or system the job executes. This occurs depending upon the availability of the WLM
scheduling environment. This environment is specified in the JOB card with the SCHENV
parameter and is inserted by the TWS product automatically, based on the operation
definition.

� Automatic load balancing and routing based on scheduling environment specifications:

– WLM resources can be used in a JESplex, and the scope is sysplex-wide. Whenever a
scheduling environment is defined on more than one system belonging to the sysplex,
WLM checks workload status to choose the system where the job has to execute,
depending on other specifications and policies defined in WLM. With TWS scheduling
environment specifications at the operation level, you can then plan workload
balancing sysplex-wide.

– Another advantage of working with WLM scheduling environments is that you have the
capability to switch workload to another system in case of problems or in case of
scheduled system stops, either planned or unplanned, without having to edit the JCL,
but by just leveraging the specifications provided at the TWS level.

T7

z/OS system C

T2

z/OS system D

T3

JES3 Sysplex2

JES2 MAS1

z/OS system A

Sysplex1

WLM CDS

WLM CDSWLM CDSC
T1

T4

T5

T6

JES JES
spoolspool

JES JES
spoolspool

z/OS system B

z/OS global A

z/OS local B z/OS local C
Chapter 6. Batch considerations 199

Implementation tasks
The following new elements are supported to achieve the functionality that we describe.

Scheduling environment definition in the Application Description and in
the Current Plan with automatic JCL tailoring
Now, you have the capability to:

� Using the ISPF dialog or PIF, you now can take advantage of new functions:

– Add, delete, and modify the scheduling environment name for a specific operation in
the Application Description.

– Add, delete, and modify the scheduling environment name for a specific operation in
the Current Plan.

These changes are allowed only if the operation status is different than Started in
order to maintain the information about the used scheduling environment name until
the job ends.

– The current user exit, EQQUX001, is modified to be able to INSERT/REPLACE the
scheduling environment of a related job at submit time. The returned name value is
stored in the Current Plan.

– A new user exit, EQQDPX01, is provided as part of the batch process used to generate
the Current Plan. The exit is invoked for each Operation of type Computer Automation,
not E2E, and the returned value of scheduling environment is stored in the Current
Plan.

– The SCHENV=SE-name parameter is automatically inserted in the JCL JOB card
according to the scheduling environment name defined in the Current Plan.

Preexistent definition in the JCL JOB card
To avoid extra processing for the Tracker submitting the job or to selectively allow the
activation of the new functionality, a new parameter in the OPCOPTS initialization statement
is supported:

SECHECK (ALL/OPERONLY/NO)

This parameter applies to the Tracker or to the Controller having the Submit function active
(use the destination blank to submit local jobs).

To activate this function, you must specify a different value than NO.

If you activate this function, you must use it for all the Trackers and Controllers within the
same sysplex. This is necessary to correctly implement the status monitoring mechanism,
because each Tracker activates the listening exit only on the related z/OS image:

ALL

The JCL is processed to check the scheduling environment availability in both of the following
cases:

� The user specified a scheduling environment name at the operation level or either the
EQQUX001 or EQQDPX01 user exit provided a value for the operation. If so, the
SCHENV=SE-name keyword is inserted or updated in the JCL JOB card. Any preexisting
value in JCL is overwritten.

� The user did not specify a scheduling environment name at the operation level and no
user exit provided a scheduling environment value for it, but a SCHENV=SE-name
keyword exists in the JCL JOB card:
200 System Programmer’s Guide to: Workload Manager

OPERONLY

The JCL is processed to check the scheduling environment availability only if a scheduling
environment name is specified at the operation level within the Current Plan, either via a
user definition or due to the involvement of the EQQUX001 or EQQDPX01 user exit. The
scheduling environment name, provided per the described methods, always overrides any
preexisting statement specification in the JCL JOB card.

NO

This is the DEFAULT. No type of check is done for any job.

The Tracker executes the scheduling environment availability check according to the
SECHECK parameter specification.

� If the scheduling environment check is required and if the scheduling environment is
available:

– JCLs are tailored (together with the SPIN tailoring, if this is also requested), inserting,
or updating the SCHENV=SE-name keyword in the JOB card.

– The Tracker informs the Controller about the successful submission (or about
problems that are not due to scheduling environment) with the already existing
IJ1 event.

� If the scheduling environment check is required and if the scheduling environment is not
available on any system in the sysplex (or at JESplex level):

– Jobs are not submitted.

– The Tracker informs the Controller about this missing submission (the new submit
event, IJ4, will contain information about this).

– The Tracker manages it, implementing a listening mechanism on scheduling
environment availability. As soon as the scheduling environment becomes available,
the Tracker informs the Controller, generating the new event VS, and the Controller
retries the Job submission.

� If the scheduling environment does not exist at all (it is not defined to WLM):

– Jobs are not submitted.

– The Tracker informs the Controller about this missing submission. The new submit
event, IJ4, will contain this information.

Check on SE availability
The Tracker submitting the job is going to check via WLM Query Service if the scheduling
environment is available:

� If the scheduling environment is available on any system in the sysplex, the job is
submitted, delegating WLM to identify the system where the job will be executed.

In order to have full workload balancing support, configure one JESplex (JES2 MAS or
JES3 Complex) in the sysplex, but your installation might have reasons to deviate from
this configuration.

In order to support configurations when there are more than one JESplex within a sysplex,
a new parameter has been added, named OPCOPTS JESPLEX (List of System Names)
to represent the associated list of system names used as an additional filter in the query to
obtain the availability of the scheduling environment at the JESplex level.

In addition, you can also have a mixture of multiple JES complexes (JES2 or JES3) within
a sysplex. In this situation, a job submitted in a JES complex cannot be routed by WLM to
another JES complex.

You can see an example of this situation described in Figure 6-2 on page 202.
Chapter 6. Batch considerations 201

Figure 6-2 Multiple sysplex configuration with multiple JESplexes within the sysplex boundaries

A scheduling environment, DB2UP, is available on system D only. When system A is
queried, the returned output indicates that DB2UP is available in the sysplex, ignoring the
JES2 MAS 1 boundary.

If a job, requiring the scheduling environment DB2UP, is submitted on system A, it remains
on the JES input queue.

You can avoid this situation by making Trackers aware of the JESplex configuration via the
new OPCOPTS JESPLEX (List of System Names) initialization parameter statement,
where the List of System Names represents the JESplex to which the Tracker belongs.
Table 6-1 illustrates the definition required to map the configuration described in
Figure 6-2, where T1, T2, T3, and T4 are the Trackers installed on the z/OS images A, B,
C, and D. They should have the following OPCOPTS JESPLEX settings.

Table 6-1 Tracker definitions

When the job is submitted on system A, Tracker T1 checks the results of WLM query for
DB2UP availability within its JESPLEX list (including A and B). In this case, Tracker T1

Tracker name OPCOPTS settings

T1 OPCOPTS JESPLEX (A,B)

T2 OPCOPTS JESPLEX (A,B)

T3 OPCOPTS JESPLEX (C,D)

T4 OPCOPTS JESPLEX (C,D)

T7

JES3 Sysplex2

WLM CDS

Sysplex1

T5

T6

z/OS system C

T3

z/OS system D

T4

JES2 MAS1

WLM CDSWLM CDS
z/OS system A

C

T2

JES JES
spoolspool

JES2 MAS2

JES JES
spoolspool

T1

z/OS global A

z/OS system B

z/OS local B z/OS local C

JES JES
spoolspool
202 System Programmer’s Guide to: Workload Manager

understands that DB2UP is not available on its JESplex, and Tracker T1 does not submit
the job.

This is a static definition. To change the configuration, you need to stop the Tracker,
update the parameter, and restart the Tracker again.

It is always possible to support more JESplexes in the same sysplex, and, therefore, to
avoid the use of the OPCOPTS JESPLEX (System Name List) parameter. Supporting
more JESplexes follows the best practices approach in the scheduling environment
definition and usage. WLM documentation provides more recommendations, too.

� If the SE is not available on any system in the sysplex (or at Tracker JESplex level, if the
OPCOPTS JESPLEX parameter is specified), the operation is set in Ready status with
extended status waiting for SE:

– This is not done if the operation comes from a Restart and Cleanup path. In this case,
the operation is set in error status SERC (scheduling environment not available for
R&C operation).

– Operations ready but waiting for scheduling environment are considered not eligible for
submission by the Controller.

� If the scheduling environment is not defined in the sysplex, the operation status is set in
Error status with a new error code SEUN (SE undefined).

Retry of operations waiting for scheduling environment
Trackers activate an ENFREQ macro listening mechanism for event code 57, which is the
event that signals the status change of an scheduling environment.

Trackers generate the new event VS to signal to the Controller that a scheduling environment
is again available on a specific image. At this point, the Controller resets the extended status
so that the operation is again eligible for submission.

Monitoring operations in ready status waiting for scheduling environment
Any list displaying the operation status and extended status supports the new Waiting for SE
extended status. Any command currently supported for ready operation is available.

6.2 Types of goals
WLM goal types deserve special considerations for batch jobs. With a good understanding of
your batch environment, you can begin to evaluate your goals and determine which service
classes might be better served by WLM initiators. Keep in mind that when using
WLM-managed initiators, JES queue time is now a part of the velocity calculation as it is with
the response time calculation.

6.2.1 Response time goal
A response time goal is best for short, homogeneous batch jobs. The response time goal can
be average or with percentile, although percentile goals are often preferable because they
are not affected by a few very long response times.

If you choose JES2 initiators, then remember that the queued time due to a lack of initiators is
part of the response time. Although WLM cannot do anything to help a job waiting for an
initiator, the performance index of the service class will grow. If you have large job execution
queues, the queue delay can dominate the response time or velocity. This can cause the
system to not address other delays because it would not significantly affect the performance
Chapter 6. Batch considerations 203

index (PI). Response time does not include the TYPRUN=HOLD delay or JCLHOLD delay,
but it does include:

� Operational delays (jobs or job class held by operator command)
� System or resource affinity delay
� Scheduling delay due to class limits or duplicate jobnames
� Time waiting for an initiator

Good candidates for this type of goal
In order to assign work assigned to a response time goal, you need to have enough
completions within a period of time; for example, at least ten completions in twenty minutes
are necessary for a response time to be effective.

The following types of batch can be good candidates for this type of goal:

� Compile jobs
� Short printing jobs
� Jobs with steady arrival rates (not bulk submission by schedulers)
� Short-running jobs
� Jobs with uniform runtimes
� Jobs where the resource delay impact on response times is minimal
� Jobs that repetitively treat a constant amount of data

6.2.2 Velocity goal
If you are using WLM-managed initiator, queued delay is now part of percentage velocity
calculation. With JES2-managed initiators, queue time is not part of the velocity evaluation.
This goal is more appropriate for most of the batch jobs, with the following considerations:

� Good value for velocity is difficult to determine.

� When determined, you need to periodically revisit this value (in the case of a change of
the profile of the batch or a hardware modification). Speed and the number of logical
processors can affect CPU components of the velocity; technology of the disk subsystem
can affect the I/O component of the velocity. In a sysplex, the achieved velocity can be
differ if a job executes in one system or in another system.

Good candidates for this type of goal
Good candidates are:

� Long-running jobs where queue time is insignificant
� Highly variable execution times
� Jobs with few completions (not enough historical data to establish a response time)

6.3 Classification rules
In your installation, be careful not to mix JES-managed and WLM-managed job classes in the
same service class. WLM allows you to do so rather than failing the jobs, but in this
environment, the management of the initiators can be unpredictable. When both initiation
schemes are used for the same service class, the correlation between queue delay and the
number of initiators that WLM recognizes as servicing the service class is weakened. Wrong
information can theoretically lead to bad decisions, therefore, our recommendation against
doing so.

No checks are available between JOBCLASS definition (mode=JES or WLM) and the rules in
the service definition; assigning a service class to a job through its jobclass is the only way.
204 System Programmer’s Guide to: Workload Manager

There is no way to assign a specific service class to a job through the MASDEF definition for
the specific system where the job is going to be executed, because the service class is
assigned during the conversion phase and the executing system is not yet determined.

The starting of new WLM initiators is predicated on the batch service class missing its goal
due to JES queue delay, and WLM making the determination that starting new initiators
reduces this delay and thereby contributes to the batch service class meeting the
installation’s defined goals. To be able to determine which jobs are the best candidates for
the WLM batch initiator, you need to have a clear understanding of your batch environment:

� Look at the SMF 30 records to find the job distribution by class, by shift, and so forth.

� Look at the SMF 72 records to find the multiple periods, DPRTY, queue delays, velocity,
response times, and the performance index if reported.

� Look at your current job class rules and how they are assigned and enforced.

Then you should analyze your initiator structure and understand the following characteristics:

� Check if there are any asymmetric configurations.
� Verify which job classes are restricted to specific systems.
� Understand if there are any special limits by job class or by system.
� Understand if there are any limits on work packs, tape drives, storage, and so forth.
� Check if the installation makes changes via operator procedures or automation.

Classification
The following qualifiers are supported by the JES subsystem type:

� Accounting information passed on the JOB statement (not the EXEC statement). This is
ignored if ACCTFLD=OPTIONAL is specified in the JOBDEF statement of the JES2 init
deck.

� Perform identifies the performance group number specified using the PERFORM keyword
on the JCL statement.

� Priority is a value between 0 and 15 identifying the priority associated with the batch job
submitted through JES2.

� Scheduling Environment Name associated with the job.

� Subsystem Collection Name to identify the XCF group name (XCFGRPNM of the MASDEF
statement of the JES2 init deck).

� Subsystem Instance is the subsystem name from IEFSSNxx (JES2 or JES3).

� Sysplex Name is a qualifier that you can use if you have the same service definition for
multiple sysplexes or monoplexes, then you need to assign different service classes
based on the specific sysplex or monoplex in which the work is running.

� Job class from CLASS keyword of the JOB statement.

� Jobname from the JOB statement.

� Userid specified on the USER keyword of the job statement.

Restriction: System name cannot be used as a qualifier because the classification occurs
during the conversion phase. At this moment, the system in which the job will run is still
unknown.
Chapter 6. Batch considerations 205

As a basic rule, classify the following jobs into two categories:

� Jobs for WLM-managed initiators
� Jobs for JES2-managed initiators

Two sets of service classes are necessary to handle these jobs. Due to the different velocity
calculation, the same service class cannot be used for a job running in an JES2 initiator and
another job running in a WLM-managed initiator.

In each category, you can define two or three service classes. There is no significant
difference between two service classes with a close velocity goal. Slow, medium, and fast are
good starting points.

We highly recommend that you use groups (transaction name) if you have a lot of jobs to
classify.

6.4 Best practices
In this section, we suggest best practices for you to use in planning your batch environment.

6.4.1 WLM-managed initiators
First of all, WLM-managed initiators do not replace JES2-managed initiators. Depending on
your needs and your environment, you should still use each type of initiator.

For example, WLM-managed initiators are not the best solution for CICS or IMS regions.
When submitted, this type of job should start immediately, even if the system is heavily
constrained. You can measure the queuing time to decide if this task is not reasonable for
your online environment. For example, if you have to restart a CICS region during the online
window, you expect it to start as quickly as possible. Most likely, these jobs often have affinity
to a particular system.

Non-candidates (keep these with JES-managed initiators) are:

� Jobs that need to run immediately or emergency jobs
� Just-in-time jobs managed by a job scheduler
� Critical path job streams
� Jobs with long resource delays
� Jobs with system affinity (until OA10814 is applied)
� Operator-held jobs
� Tape-constrained environments or jobs subject to waiting on data set enqueues
� Jobs used to support IMS and CICS regions

This list is not exhaustive and, depending your environment and your needs, our
recommendations might not apply.

Fragmentation
WLM initiators might suffer from the same storage fragmentation problems as JES initiators.
WLM does not detect dirty initiators and replace them with new initiators. You need to

Tip: You can use Subsystem Collection Name (SSC) to assign a different service class to
a job in a sysplex with several MASPlexes, even if these MASPlexes have only one
member.
206 System Programmer’s Guide to: Workload Manager

perform this task manually using the P INIT,A=asid command; WLM then replaces this
initiator with a new initiator.

If you cannot determine the ASID, or if you want to recycle all initiators as part of a regular
cleanup process, you can use the $P XEQ and $S XEQ commands. The $P XEQ command
flags all WLM initiators on that system to terminate. The $S XEQ command enables WLM to
start new initiators (without needing to wait for the old initiators to end). Beware that the
$P XEQ command purges WLM’s history that you can use to understand how many initiators
are needed for each service class. It might take some time for WLM to create the same
number of initiators that existed before.

You can also use the SDSF Y action character, which generates the MVS P (STOP)
command.

Balancing
Before z/OS 1.8, initiators were mostly started on the submitting member of the sysplex
(where the scheduler product runs).

The enhancement provided by the Batch Initiator Balancing function is to improve the
performance and throughput of batch workload over the sysplex. Its intention is not to reach
an equally balanced distribution of batch jobs over the LPARs of a sysplex. That is why
initiator balancing only takes place when at least one of the systems of the sysplex has a CPU
utilization of more than 95%, while other systems have idle capacity. There is not any
improvement to the total batch throughput by removing initiators from the system with the
highest load if this system has enough idle capacity to run batch jobs without CPU
constraints. This is true even if the other systems have more idle CPU capacity.

JES2 parameter
In the JESPARM configuration, do not to define a JOBCLASS with the MODE=WLM if this
class is already defined to a JES2 initiator. See Example 6-2.

Example 6-2 JES2 parameter

JOBCLASS(A,B) MODE=WLM,

JOBCLASS(*) MODE=JES,

INITDEF PARTNUM=50
I1 CLASS=ABCDEFG12345,START=NO
I2 CLASS=AB,START
I3 CLASS=ABC,START
I4 CLASS=ABC,START
..........

Example 6-2 shows an extract of the JES2 parameters. This setup is prone for the potential
problem where Init I2 will not be able to handle any jobs, because classes A and B are
WLM-managed.

Using the JES2 display command, you obtain the result shown in Example 6-3 on page 208.

Note: Starting from z/OS 1.5, the VSM™ CHECKREGIONLOSS(bbb,aaa) parameter in
the DIAGxx member of the PARMLIB can be used to automatically terminate and restart
initiators when the maximum available region size decreases the amount specified by this
parameter.
Chapter 6. Batch considerations 207

Example 6-3 JES2 Display Initiator command

$DI
$HASP892 INIT(1) 152
$HASP892 INIT(1) STATUS=DRAINED,CLASS=CDEFG12345,
$HASP892 INELIGIBLE_CLASS=(A-WLM,B-WLM),NAME=1
$HASP892 INIT(2) 153
$HASP892 INIT(2) STATUS=INACTIVE,CLASS=,
$HASP892 INELIGIBLE_CLASS=(A-WLM,B-WLM),NAME=2,
$HASP892 ASID=002B
$HASP892 INIT(3) 154
$HASP892 INIT(3) STATUS=INACTIVE,CLASS=C,
$HASP892 INELIGIBLE_CLASS=(A-WLM,B-WLM),NAME=3,
$HASP892 ASID=002C

Example 6-3 shows that INIT(2) is not serving either class A or B, because they are
WLM-managed.

6.4.2 Quiescing a batch job
If you need to temporarily quiesce a batch job, for example, because this job is looping or
consuming too many resources, you can use the RESET command:

E jobname,QUIESCE

In some cases, this command might not be successful because the address space is marked
as non-swappable, and even with the lowest dispatching priority (FB), it continues to run.

It is possible to circumvent this problem by creating a special service class with a
discretionary goal and a Resource Group with a maximum of 1. You can assign this service
class to the job, using the RESET command:

E jobname,SRVCLASS=SCQUIESC

In this way, you do not completely stop the job, but you can reduce its CPU consumption to a
minimum.

6.4.3 Choosing the right velocity
Each workload has its own velocity, depending on the type of work and the hardware
configuration. You can verify in the RMF reports or Monitor III Display which velocity can be
achieved while the system is not constrained. There is a bigger difference between two goals
with different importances and the same velocity than there is with two goals with the same
importance and two different velocities.

It is useless to define several service class periods with too similar a velocity goal and the
same importance. Velocity values within the same importance should have a difference of at
least 10% to 15%.

Test case
We ran a scenario to be able to show you how the choice of the goal can affect the WLM
mechanism. See Example 6-4 on page 209.

Note: In a CPU-constrained environment, you might not be able to cancel a quiesced job.
Resuming this job first by using the E jobname,RESUME command might be necessary to
make the cancel effective.
208 System Programmer’s Guide to: Workload Manager

For our test case, we use a job with an observed velocity capability of 25%. In other words, in
an unconstrained environment, this job cannot get more than 25% of velocity.

We defined three service classes for this job with the same importance, and we start three
clones of this job, one for each service class. The three jobs are similar, because they
execute the same program with the same data:

� ITSOV01 imp 3 velocity 10
� ITSOV02 imp 3 velocity 25
� ITSOV03 imp 3 velocity 40

See Example 6-4.

Example 6-4 Sysplex Summary RMF Monitor III display

RMF V1R5 Sysplex Summary - WTSCPLX1 Line 1 of 31
Command ===> Scroll ===> CSR

WLM Samples: 399 Systems: 16 Date: 04/04/05 Time: 19.40.00 Range: 100 Sec

 >>>>>>>>XXXXXXXXXXXXXXXXXX<<<<<<<<

Service Definition: spstpc Installed at: 04/04/05, 17.54.17
 Active Policy: SPSTPC Activated at: 04/04/05, 17.54.29

 ------- Goals versus Actuals -------- Trans --Avg. Resp. Time-
 Exec Vel --- Response Time --- Perf Ended WAIT EXECUT ACTUAL
Name T I Goal Act ---Goal--- --Actual-- Indx Rate Time Time Time

BATCH W 14 0.000 0.000 0.000 0.000
ITSOV01 S 3 10 12 0.87 0.000 0.000 0.000 0.000
ITSOV02 S 3 25 14 1.81 0.000 0.000 0.000 0.000
ITSOV03 S 3 40 16 2.58 0.000 0.000 0.000 0.000
CICS W N/A 0.010 0.000 0.000 0.000
CICSDFLT S 2 N/A 0.015 99% 100% 0.50 0.010 0.000 0.000 0.000
DB2RES W 0.5 14.42 0.000 0.329 0.329
SCDB2STP S 0.5 14.42 0.000 0.329 0.329
 1 2 0.5 30.00 AVG 0.329 AVG 0.01 14.42 0.000 0.329 0.329
OTHER W 10 0.010 0.000 3.414 3.414

Example 6-4 shows an RMF Monitor III Display report. Observe that the three service classes
have almost the same execution velocity. But, because the goals were different, the
performance index obtained by each service class is extremely different, too. In this case,
WLM assigns a different dispatching priority to each job, as shown with the System Display
and Search Facility (SDSF). See Example 6-5.

Example 6-5 SDSF display of the three jobs

Display Filter View Print Options Help

SDSF DA SC69 SC69 PAG 0 SIO 2442 CPU 99/ 97 LINE 1-8 (8)
COMMAND INPUT ===> SCROLL ===> PAGE
NP JOBNAME StepName ProcStep JobID Owner C Pos DP Real Paging SIO
 ITSOV10 STEP1 JOB12116 CASSIER A IN F1 337 0.00 315.64
 ITSOV20 STEP1 JOB12124 CASSIER A IN F3 340 0.00 472.61
 ITSOV30 STEP1 JOB12135 CASSIER A IN F5 336 0.00 660.51
 LOAD10 STEP1 JOB12092 CASSIER A IN F7 342 0.00 88.93
 LOAD20 STEP1 JOB12093 CASSIER A IN F7 337 0.00 85.78
 LOAD30 STEP1 JOB12094 CASSIER A IN F7 336 0.00 50.91
 LOAD40 STEP1 JOB12095 CASSIER A IN F7 337 0.00 56.28
 LOAD50 STEP1 JOB12096 CASSIER A IN F7 337 0.00 675.31

In the Example 6-5, the DP column gives the dispatching priority of the three jobs ITSOV10,
ITSOV20, and ITSOV30. They are, respectively, F1, F3, and F5. This follows the order of the
performance indexes.

This is an important point to consider when you specify a goal for a service class.
Chapter 6. Batch considerations 209

6.4.4 Usage and number of periods
There is really no general rule for this element. It mostly depends on your installation, but you
can consider the following items while planning your configuration.

In today’s environment, the order of importance of the different periods must be equal or
descending.

Carefully consider the usage of a low-priority period as the last one based on:

� Consider if the job really become less important because it has a lot of work to do.

� Verify if the job acquires a lot of locks (performing DB2 or IMS updates): Decreasing its
speed might cause global contention, especially if you use a discretionary goal. With this
goal, a job could not get CPU resources for a while if the system is heavy constrained.

Generally, consider that the first period should be used to speed up a short job and that the
second period should be used to decrease the performance goal for a long-running job.

Durations of periods should be carefully revisited. Often, durations are too short for batch
service classes. Those durations should be reevaluated with the current workloads.

Check the WLM report to verify whether the number of jobs that ended during the first period
is what you planned. See Example 6-6.

Example 6-6 Workload level report

REPORT BY: POLICY=WLMPOL WORKLOAD=BAT_WKL SERVICE CLASS=BATMED RESOURCE GROUP=*NONE
CRITICAL =NONE

 DESCRIPTION =medium priority batch

 TRANSACTIONS TRANS.-TIME HHH.MM.SS.TTT --DASD I/O-- ---SERVICE---- --SERVICE TIMES-- PAGE-IN RATES ----STORAGE----
 AVG 24.90 ACTUAL 6.20.857 SSCHRT 217.7 IOC 13054 TCB 1421.1 SINGLE 0.0 AVG 223.63
 MPL 24.90 EXECUTION 6.19.483 RESP 47.0 CPU 29491K SRB 2.3 BLOCK 0.0 TOTAL 5568.17
 ENDED 24 QUEUED 1.155 CONN 1.6 MSO 14472K RCT 0.0 SHARED 0.0 CENTRAL 5568.17
 END/S 0.04 R/S AFFINITY 0 DISC 0.0 SRB 47626 IIT 1.3 HSP 0.0 EXPAND 0.00
 #SWAPS 0 INELIGIBLE 218 Q+PEND 4.0 TOT 44024K HST 0.0 HSP MISS 0.0
 EXCTD 0 CONVERSION 262 IOSQ 41.3 /SEC 73374 IFA N/A EXP SNGL 0.0 SHARED 0.00
 AVG ENC 0.00 STD DEV 8.37.142 APPL% CP 237.5 EXP BLK 0.0
 REM ENC 0.00 ABSRPTN 2947 APPL% IFACP 0.0 EXP SHR 0.0
 MS ENC 0.00 TRX SERV 2947 APPL% IFA N/A

 PER IMPORTANCE PERF --TRANSACTIONS-- -------------RESPONSE TIME-------------- -EX VEL%- TOTAL -EXE--
 INDX -NUMBER- -%- ------GOAL------ ---ACTUAL--- TOTAL GOAL ACT USING% DELAY%
 1 4 0.9 0 0 25 27.2 21.4 57.4
 2 5 1.9 24 100 20 10.5 10.0 85.5
 TOTAL 24 100

Example 6-6 shows the use of a WLM report type WGPER where you can check how many
jobs ended during the first period. In this example, all 24 jobs or 100% ended in the second
(and last) period. In this configuration, you need to consider increasing the duration of the first
period.

6.5 Resource Group usage
This section shows measurement related to Resource Group usage.

In the first test case, we submit three identical CPU bound jobs in a service class that has a
Resource Group assigned. In the second test case, we submit the same jobs with three

Note: Depending on the functionality level used, you might get a warning or an error when
you validate or try to activate a service definition that does not follow this rule.
210 System Programmer’s Guide to: Workload Manager

different service classes where the same Resource Group was assigned. For all cases, we
measured the elapsed time of the jobs.

6.5.1 First test case
This test case shows the behavior of a job having a service class with a Resource Group
assigned. We define a service class with a Resource Group with a maximum capacity of
15000 SU/s and submit three similar jobs in this service class. Our expectation is that the
elapsed time for the three is extremely similar. See Figure 6-3.

Figure 6-3 Jobs’ elapsed time running in the same Resource Group (same service class)

Figure 6-3 shows the results. The small difference among the elapsed times is due to the time
necessary for the Resource Group algorithm to properly cap the address spaces classified in
the service class.

6.5.2 Second test case
Now, we want to assess how the importance of the goal of the service class is honored when
a Resource Group is assigned to different service classes. The three service classes have
the same goal, which is execution velocity of 50%, and different Importance levels from 3 to
5. We expect that the Importance 3 job will end first, then the Importance 4 job, and then the
Importance 5 job. The three service classes have a Resource Group with a maximum
capacity of 15000 SU/s. See Table 6-2.

Table 6-2 Jobs’ elapsed time running in the same Resource Group (different service classes)

Table 6-2 shows the results. As expected, the Importance is honored; the elapsed time of the
Importance 3 job is shorter than the elapsed time of the Importance 4 job, and so on. We
performed the same test with two similar jobs running per service class. See Table 6-3 on
page 211.

Table 6-3 Jobs’ elapsed time (two jobs per service class)

JOBNAME START END DURATION SC IMP VEL RG MAXIMUM

ITSOB30 12:56:44 13:16:48 0:20:04 ITSOP3 3 50% ITSOPSSC 15000

ITSOB31 12:56:44 13:17:43 0:20:59 ITSOP3 3 50% ITSOPSSC 15000

ITSOB32 12:56:44 13:18:28 0:21:44 ITSOP3 3 50% ITSOPSSC 15000

Jobname Start End Duration SC IMP VEL RG Maximum

ITSCB30 18:42:53 18:48:16 0:05:23 ITSOP3 3 50% ITSOPSSC 15000

ITSCB40 18:42:53 18:50:23 0:07:30 ITSOP4 4 50% ITSOPSSC 15000

ITSCB50 18:42:53 18:50:34 0:07:41 ITSOP5 5 50% ITSOPSSC 15000

Jobname Start End Duration SC IMP VEL RG Maximum

ITSCB31 18:51:11 19:02:19 0:11:08 ITSOP3 3 50% ITSOPSSC 15000

ITSCB30 18:51:11 19:02:20 0:11:09 ITSOP3 3 50% ITSOPSSC 15000

ITSCB40 18:51:11 19:05:41 0:14:30 ITSOP4 4 50% ITSOPSSC 15000

ITSCB41 18:51:11 19:05:46 0:14:35 ITSOP4 4 50% ITSOPSSC 15000

ITSCB51 18:51:11 19:08:06 0:16:55 ITSOP5 5 50% ITSOPSSC 15000
Chapter 6. Batch considerations 211

Table 6-3 shows that two jobs running in the same service class have very close elapsed time
and that the Importance is honored among service classes.

6.6 Impact of the number of engines on velocity
This section shows the impact of the number of engines on the execution velocity through two
test cases. The execution velocity percentage is computed by dividing the number of using
samples by the sum of using and delays samples. Every 250 milliseconds, WLM samples the
state of each address space. Our samples are based on CPU bound jobs, so the using CPU
states were the biggest contributors of execution velocity values.

In the first case, we started with an LPAR configured with ten engines on an IBM z990, and
then we remove them until we have two engines left. The workload is made by 20 batch jobs
running for all periods in 20 initiators.

In the second test case, we capped the LPAR and started with six engines. Then, we added
one engine at a time until we reached a nine-engine configuration.

6.6.1 First case results
Figure 6-4 on page 213 shows the effect of decreasing the number of engines from ten to two
on the execution velocity. The line in the graphic represents the execution velocity percentage
scaled by the Y axis. The bars represent the performance index (PI) of the service class. The
goal was an execution velocity of 50%. Even running with ten engines, the PI was greater
than one because we had 20 batch jobs running on these ten engines. So, in this case, each
job was competing for the engine.

ITSCB50 18:51:11 19:08:16 0:17:05 ITSOP5 5 50% ITSOPSSC 15000

Jobname Start End Duration SC IMP VEL RG Maximum
212 System Programmer’s Guide to: Workload Manager

Figure 6-4 Decreasing the number of engines

Example 6-7 shows the WLM report with the ten engines’ configurations at the beginning of
the test case. The execution delays % samples are 56.5%.

Example 6-7 Extract of WLM RMF report with ten engines

GOAL: EXECUTION VELOCITY 50.0% VELOCITY MIGRATION: I/O MGMT 43.4% INIT MGMT 43.4%

 RESPONSE TIME EX PERF AVG --- USING% --- ---------- EXECUTION DELAYS % --------- ---DLY%-- -CRYPTO%- ---CNT%-- %
 SYSTEM VEL% INDX ADRSP CPU IFA I/O TOT CPU UNKN IDLE USG DLY USG DLY QUIE

 SC69 --N/A-- 43.4 1.2 20.0 43.4 N/A 0.0 56.5 56.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0

Example 6-8 shows the report at the end of the test case where we are running with two
engines. The execution delays % samples account now for 91.3%, while the PI jumps to 5.7
as the execution velocity percentage drops to 8.7%.

Example 6-8 Extract of WLM RMF report with only two engines

GOAL: EXECUTION VELOCITY 50.0% VELOCITY MIGRATION: I/O MGMT 8.7% INIT MGMT 8.7%

 RESPONSE TIME EX PERF AVG --- USING% --- ---------- EXECUTION DELAYS % --------- ---DLY%-- -CRYPTO%- ---CNT%-- %
 SYSTEM VEL% INDX ADRSP CPU IFA I/O TOT CPU UNKN IDLE USG DLY USG DLY QUIE

 SC69 --N/A-- 8.7 5.7 20.0 8.7 N/A 0.0 91.3 91.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6.6.2 Second case results
In the second case, we capped the LPAR configuration to have the same amount of CPU
capacity during the test case. When adding an engine, take into account the multiprocessor
(MP) factor effect. In the last interval of this experiment with nine engines, the global capacity
of the machine decreases a little while the size of the logical uniprocessor is divided into 3.

0

1

2

3

4

5

6

03/26/2005-
11.25.00

03/26/2005-
11.30.00

03/26/2005-
11.35.00

03/26/2005-
11.40.00

03/26/2005-
11.45.00

03/26/2005-
11.50.00

03/26/2005-
11.55.00

03/26/2005-
12.00.00

03/26/2005-
12.05.00

0

5

10

15

20

25

30

35

40

45

50
Chapter 6. Batch considerations 213

Figure 6-5 shows the effect on execution velocity when increasing the number of engines
from six to nine, keeping the same LPAR capacity. The line represents the execution velocity
percentage scaled by the Y axis. The bars represent the performance index of the service
class. The goal was an execution velocity of 50%. The goal is never reached, but the
performance index is improving when adding logical engines.

Figure 6-5 Effect of increasing the number of engines keeping the LPAR capacity

The curve analysis shows that the increase of the number of engines does not produce a
linear effect on the execution velocity percentage.

Example 6-9 shows that the execution delays % samples account for 83.5% and the PI of 3.

Example 6-9 Extract of RMF WLM report with two engine configuration

REPORT BY: POLICY=SPSTPC WORKLOAD=BATCH SERVICE CLASS=ITSOB01 RESOURCE GROUP=*NONE PERIOD=1 IMPORTANCE=3
 CRITICAL =NONE

 TRANSACTIONS TRANS.-TIME HHH.MM.SS.TTT --DASD I/O-- ---SERVICE---- --SERVICE TIMES-- PAGE-IN RATES ----STORAGE----
 AVG 19.99 ACTUAL 44.11.936 SSCHRT 1.2 IOC 200 TCB 902.7 SINGLE 0.0 AVG 8359.58
 MPL 19.99 EXECUTION 44.10.934 RESP 1.6 CPU 16814K SRB 0.0 BLOCK 0.0 TOTAL 167094
 ENDED 8 QUEUED 1.001 CONN 1.2 MSO 34343K RCT 0.0 SHARED 0.0 CENTRAL 167094
 END/S 0.03 R/S AFFINITY 0 DISC 0.1 SRB 491 IIT 0.0 HSP 0.0 EXPAND 0.00
 #SWAPS 0 INELIGIBLE 0 Q+PEND 0.2 TOT 51157K HST 0.0 HSP MISS 0.0
 EXCTD 0 CONVERSION 0 IOSQ 0.0 /SEC 170387 IFA N/A EXP SNGL 0.0 SHARED 19.99
 AVG ENC 0.00 STD DEV 0 APPL% CP 300.7 EXP BLK 0.0
 REM ENC 0.00 ABSRPTN 8524 APPL% IFACP 0.0 EXP SHR 0.0
 MS ENC 0.00 TRX SERV 8524 APPL% IFA N/A

 GOAL: EXECUTION VELOCITY 50.0% VELOCITY MIGRATION: I/O MGMT 16.4% INIT MGMT 16.4%

 RESPONSE TIME EX PERF AVG --- USING% --- ---------- EXECUTION DELAYS % --------- ---DLY%-- -CRYPTO%- ---CNT%-- %
 SYSTEM VEL% INDX ADRSP CPU IFA I/O TOT CPU UNKN IDLE USG DLY USG DLY QUIE

 SC69 --N/A-- 16.4 3.0 20.0 16.4 N/A 0.0 83.5 83.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0

Example 6-8 on page 213 shows the last interval with nine engines. The execution delays
samples decrease and the PI is now 2, compared to the first interval where it was 3. See
Example 6-10 on page 215.

3.0

2.4
2.2

2.0

16.40

21.20

23.30

25.60

0

0.5

1

1.5

2

2.5

3

3.5

03/26/2005-12.40.00 03/26/2005-12.45.00 03/26/2005-12.50.00 03/26/2005-12.55.00

0

5

10

15

20

25

30
214 System Programmer’s Guide to: Workload Manager

Example 6-10 Extract of RMF WLM report with nine engine configuration

REPORT BY: POLICY=SPSTPC WORKLOAD=BATCH SERVICE CLASS=ITSOB01 RESOURCE GROUP=*NONE PERIOD=1 IMPORTANCE=3
 CRITICAL =NONE

 TRANSACTIONS TRANS.-TIME HHH.MM.SS.TTT --DASD I/O-- ---SERVICE---- --SERVICE TIMES-- PAGE-IN RATES ----STORAGE----
 AVG 20.00 ACTUAL 0 SSCHRT 0.1 IOC 13 TCB 911.0 SINGLE 0.0 AVG 8605.17
 MPL 20.00 EXECUTION 0 RESP 2.6 CPU 15809K SRB 0.1 BLOCK 0.0 TOTAL 172097
 ENDED 0 QUEUED 0 CONN 1.8 MSO 33210K RCT 0.0 SHARED 0.0 CENTRAL 172097
 END/S 0.00 R/S AFFINITY 0 DISC 0.3 SRB 1075 IIT 0.0 HSP 0.0 EXPAND 0.00
 #SWAPS 0 INELIGIBLE 0 Q+PEND 0.4 TOT 49021K HST 0.0 HSP MISS 0.0
 EXCTD 0 CONVERSION 0 IOSQ 0.0 /SEC 163512 IFA N/A EXP SNGL 0.0 SHARED 20.00
 AVG ENC 0.00 STD DEV 0 APPL% CP 303.9 EXP BLK 0.0
 REM ENC 0.00 ABSRPTN 8176 APPL% IFACP 0.0 EXP SHR 0.0
 MS ENC 0.00 TRX SERV 8176 APPL% IFA N/A

 GOAL: EXECUTION VELOCITY 50.0% VELOCITY MIGRATION: I/O MGMT 25.6% INIT MGMT 25.6%

 RESPONSE TIME EX PERF AVG --- USING% --- ---------- EXECUTION DELAYS % --------- ---DLY%-- -CRYPTO%- ---CNT%-- %
 SYSTEM VEL% INDX ADRSP CPU IFA I/O TOT CPU UNKN IDLE USG DLY USG DLY QUIE

 SC69 --N/A-- 25.6 2.0 20.0 25.6 N/A 0.0 74.3 74.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0

To summarize the results of these tests, we can conclude that:

� Velocity is independent of speed.

� Due to the WLM sampling mechanism, the more engines you use (whatever their
capacity), the higher probability you have to be sampled as using CPU. That is
demonstrated in our second test case.

Note: IRD considerations:

When CPC is close to 100% utilization, to minimize LPAR overhead, IRD gives each LP as
few logical CPs as possible, while still trying to make sure that each LP has access to a
sufficient capacity configuration. By minimizing the number of logical CPs, it also increases
the effective speed of each one.

Notice, in this example, that the CPU service unit consumption is larger with two engines
than with nine.
Chapter 6. Batch considerations 215

216 System Programmer’s Guide to: Workload Manager

Chapter 7. TSO, STC, and APPC workloads

This chapter discusses how to classify Time Sharing Option (TSO), STC, and Advanced
Program-to-Program Communication (APPC) workloads.

This chapter also includes information about the classification rules for each subsystem type
and suggestions about their goal setting.

7

© Copyright IBM Corp. 2005, 2006, 2007. All rights reserved. 217

7.1 General considerations for TSO
TSO is an interactive workload. There are users at the terminals waiting for a quick response
when they press Enter.

Each TSO user has individual address space in which only one transaction is executed at a
time. Each command issued from the foreground is counted as a transaction. An exception
for this rule is the use by the installation of the option CNTCLIST=YES, in IEAOPTxx. Using
CNTCLIST=YES causes SRM to account for each command in the CLIST as a new
transaction. Refer to z/OS Initialization and Tuning Reference, SA22-7592, for more
information about this parameter.

Figure 7-1 illustrates a typical TSO environment: The users Joe and Bill log on to TSO; the
logon command creates their user address spaces where their transactions will be executed.

Figure 7-1 Typical TSO environment

7.2 Types of goals for TSO
For TSO transactions, we recommend that you use response time goals. The transactions are
short and quick with enough completions to allow SRM to collect a reasonable statistical
sample set on which to base decisions. Additionally, response time goals are less sensitive to
upgrades of the processor power or capacity than velocity goals.

Workload Manager (WLM) supports two types of response time goals: An average response
time goal and a percentile response time goal. At this point, we want to find out which might
be better suited as a goal. Example 7-1 on page 219 shows a response time distribution

Bill
Joe

Bill

TSO
User
Address
space

Joe

TSO
User
Address
space

218 System Programmer’s Guide to: Workload Manager

captured by WLM for a service class. WLM always captures the distribution of ending
transactions for its own decision process as well as for external examination. Externally, this
information is available through monitoring products such as Resource Measurement Facility
(RMF). The only difference is that internally WLM uses slightly higher granularity.

Example 7-1 Example of ended and running TSO transactions

SCPER report
 ---RESPONSE TIME--- EX PERF AVG --USING%-- ------------ EXECUTION DELAYS % ------------- ---DLY%-- -CRYPTO%- %
 HH.MM.SS.TTT VEL INDX ADRSP CPU I/O TOTAL UNKN IDLE USG DLY QUIE
 GOAL 00.00.00.150 90.0%
 ACTUALS
 MVSA 97.1% 57.1% 0.5 75.1 0.1 0.0 0.0 0.3 100 0.0 0.0 0.0

 ----------RESPONSE TIME DISTRIBUTION----------
 ----TIME---- --NUMBER OF TRANSACTIONS-- -------PERCENT------- 0 10 20 30 40 50 60 70 80 90 100
 HH.MM.SS.TTT CUM TOTAL IN BUCKET CUM TOTAL IN BUCKET !....!....!....!....!....!....!....!....!....!....!
 < 00.00.00.075 10671 10671 94.5 94.5 >>
 <= 00.00.00.090 10750 79 95.2 0.7 >
 <= 00.00.00.105 10812 62 95.7 0.5 >
 <= 00.00.00.120 10873 61 96.3 0.5 >
 <= 00.00.00.135 10923 50 96.7 0.4 >
 <= 00.00.00.150 10965 42 97.1 0.4 >
 <= 00.00.00.165 11005 40 97.5 0.4 >
 <= 00.00.00.180 11035 30 97.7 0.3 >
 <= 00.00.00.195 11056 21 97.9 0.2 >
 <= 00.00.00.210 11072 16 98.1 0.1 >
 <= 00.00.00.225 11074 2 98.1 0.0 >
 <= 00.00.00.300 11111 37 98.4 0.3 >
 <= 00.00.00.600 11170 59 98.9 0.5 >
 > 00.00.00.600 11292 122 100 1.1 >

In Example 7-1, 11292 transactions executed or ended through the observed time interval. By
looking at the report, we can see that 94.5% of the transactions completed within 75
milliseconds and that only 1.1% of the transactions took a longer period of time or have not
completed yet. In this example, we defined a percentile response time goal of 0.15 seconds
for 90% of the transactions. Looking at the response time distribution, you can see that the
majority of the transactions complete within the target goal. Only 2.9% of the transactions are
not meeting the goals.

In this configuration, we can immediately understand the advantage of a percentile response
time goal. It can be very sensitive to long-running outlying transactions. By using a percentile
response time of 90% of all transactions to be completed within 0.15 seconds, the goal is
achieved and this facilitates the policy adjustment algorithm. It is easier to adjust the resource
access for the work so that 90% of the transactions run slightly faster and achieve the goal
than to change the resource access to help a few extremely long-running transactions.

Using response time with percentile is generally better than average response time, because
the worst response times tend to distort the average.

In addition, your installation probably uses service class periods for TSO. If your installation
does not have service class periods, consider implementing them. As a best practice, three
periods are usually enough for TSO users.

You can use multiple periods; we recommend two or three periods. You can punish those
transactions that use more service than you think is a reasonable amount of service for a
TSO user. You do this by setting the last period of a service class to a low-priority goal.

You can refine the values that you enter as you gain experience with your system behavior.
You can adjust the values based on Workload Activity report data.
Chapter 7. TSO, STC, and APPC workloads 219

7.3 Best practices for TSO
You can choose to create a special TSO service class with more aggressive goals and with
an importance level higher than the other TSO users. Support can use this special TSO
service class in case of system problems, such as debugging or situations where the system
hangs up.

During a situation where the system hangs up, you can change the service class of your TSO
user ID using the RESET operator command:

E tsouid,SRVCLASS=scname

In this command, tsouid is your TSO user ID and scname is the service class name with high
priority. In some cases, you need to run this command from the z/OS console. An alternative
to this approach is to assign a TSO user ID to SYSSTC and have that user logged on all the
time. This allows you to have a TSO session available even in situations where you cannot
issue the RESET command.

7.4 Classification rules for TSO
For better handling of our classification rules, we suggest grouping together user IDs with
similar characteristics and then assigning a service class to the group. For classification rules,
you can use the following qualifiers:

� Accounting Information (AI)
� Perform (PF)
� Perform Group (PFG)
� Sysplex Name (PX)
� Sysname (SY)
� Sysname Group (SYG)
� Userid (UI)
� Userid Group (UIG)

Example 7-2 implements TSO classification with these assumptions:

� Any TSO user, who is not explicitly classified, is assigned to a low priority goal.
� TSO user IDs are classified in three user ID groups: TSOHI, TSOMED, and TSOLOW.
� Only certain special users can use a service class with a very aggressive goal.

Example 7-2 General TSO classification rules

Subsystem-Type Xref Notes Options Help
--
 Modify Rules for the Subsystem Type Row 1 to 5 of 5
Command ===> __ SCROLL ===> PAGE

Subsystem Type . : TSO Fold qualifier names? Y (Y or N)
Description . . . Use Modify to enter YOUR rules

Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 --------Qualifier-------- -------Class--------
Action Type Name Start Service Report
 DEFAULTS: SCTSOLOW RTSO
 ____ 1 UIG TSOHI ___ SCTSOHI ________
 ____ 1 UIG TSOMED ___ SCTSOMED ________
 ____ 1 UIG TSOLOW ___ SCTSOLOW ________
220 System Programmer’s Guide to: Workload Manager

 ____ 1 UI GIAN* ___ SCTSOHOT ________
 ____ 1 UI ANNA* ___ SCTSOHOT ________

7.5 Reporting for TSO
Example 7-3 shows a RMF Workload Activity Report collecting TSO data.

In this case, we have defined three periods for the service class TSOHIGH used by TSO user
IDs:

� The first period has percentile RT, where 85% of transactions should end within 0.7
seconds and Importance 1.

� The second period has percentile RT, where 75% of transactions should end within 3.0
seconds and Importance 2.

� The third period has percentile RT, where 50% of transactions should end within 10.0
seconds and Importance 3.

The most interesting fields for the TSO performance analysis are:

ENDED This value is the number of transactions ended
within the interval of that period.

APPL % This field shows CPU utilization based on
uniprocessor capacity. The value can exceed
100% in systems with more than one processor.
To get the system utilization, this value has to be
divided by the number of processors.

PERF INDX It is the calculated PI for the interval.

EXECUTION DELAYS % The delays under control of WLM/SRM.

DLY% The delays not controlled by WLM/SRM.

RESPONSE TIME DISTRIBUTION The breakdown response time related to the goal.

Example 7-3 RMF Workload Activity report for TSO

 W O R K L O A D A C T I V I T Y
 PAGE 29
 z/OS V1R3 SYSPLEX SYSPLEX1 START 12/16/2004-11.00.00 INTERVAL 001.00.02 MODE = GOAL
 CONVERTED TO z/OS V1R2 RMF END 12/16/2004-12.00.02

-- SERVICE CLASS PERIODS

REPORT BY: POLICY=POLICY01 WORKLOAD=TSOWRKLD SERVICE CLASS=TSOHIGH RESOURCE GROUP=*NONE PERIOD=1 IMPORTANCE=1
 CRITICAL =NONE

TRANSACTIONS TRANS.-TIME HHH.MM.SS.TTT --DASD I/O-- ---SERVICE---- --SERVICE RATES-- PAGE-IN RATES ----STORAGE----
AVG 3.69 ACTUAL 205 SSCHRT 151.6 IOC 274320 ABSRPTN 608 SINGLE 0.0 AVG 2847.18
MPL 3.60 EXECUTION 203 RESP 2718.9 CPU 7483K TRX SERV 592 BLOCK 0.0 TOTAL 10236.8
ENDED 65081 QUEUED 2 CONN 118.4 MSO 0 TCB 452.4 SHARED 0.0 CENTRAL 10236.8
END/S 18.08 R/S AFFINITY 0 DISC 2599.8 SRB 116616 SRB 7.0 HSP 0.0 EXPAND 0.00
#SWAPS 62458 INELIGIBLE 0 Q+PEND 0.6 TOT 7874K RCT 18.7 HSP MISS 0.0
EXCTD 0 CONVERSION 0 IOSQ 0.0 /SEC 2187 IIT 4.1 EXP SNGL 0.0 SHARED 20.51
AVG ENC 0.00 STD DEV 9.250 HST 0.0 EXP BLK 0.0
REM ENC 0.00 APPL % 13.4 EXP SHR 0.0
MS ENC 0.00

 VELOCITY MIGRATION: I/O MGMT 34.2% INIT MGMT 34.2%

 ---RESPONSE TIME--- EX PERF AVG --USING%-- ------------ EXECUTION DELAYS % ------------- ---DLY%-- -CRYPTO%- %
 HH.MM.SS.TTT VEL INDX ADRSP CPU I/O TOTAL CPU UNKN IDLE USG DLY QUIE
 GOAL 00.00.00.700 85.0%
 ACTUALS
 *ALL 96.3% 34.2% 0.5 640.9 0.0 0.0 0.1 0.1 0.4 99.4 0.0 0.0 0.0
 SC01 95.4% 30.6% 0.5 9.9 0.0 0.0 0.0 0.0 0.5 99.5 0.0 0.0 0.0
 SC02 97.7% 50.6% 0.5 19.6 0.1 0.1 0.1 0.1 0.4 99.3 0.0 0.0 0.0
Chapter 7. TSO, STC, and APPC workloads 221

 SC03 94.6% 56.9% 0.5 20.6 0.1 0.1 0.1 0.0 1.6 98.2 0.0 0.0 0.0
 SC04 97.6% 70.4% 0.5 3.6 0.1 0.0 0.0 0.0 0.9 99.0 0.0 0.0 0.0
 SC05 95.7% 53.1% 0.5 29.4 0.0 0.0 0.0 0.0 0.4 100 0.0 0.0 0.0
 SC06 97.3% 35.6% 0.5 124.8 0.0 0.0 0.1 0.1 0.1 100 0.0 0.0 0.0
 SC07 95.9% 30.2% 0.5 354.4 0.0 0.0 0.1 0.1 0.5 99.4 0.0 0.0 0.0
 SC08 93.7% 23.0% 0.5 8.1 0.0 0.0 0.1 0.0 0.7 99.2 0.0 0.0 0.0
 SC09 98.0% 55.2% 0.5 7.1 0.0 0.1 0.1 0.0 1.1 98.6 0.0 0.0 0.0
 SC10 97.4% 18.8% 0.5 63.4 0.0 0.0 0.1 0.1 0.2 100 0.0 0.0 0.0

 W O R K L O A D A C T I V I T Y
 PAGE 30
 z/OS V1R3 SYSPLEX SYSPLEX1 START 12/16/2004-11.00.00 INTERVAL 001.00.02 MODE = GOAL
 CONVERTED TO z/OS V1R2 RMF END 12/16/2004-12.00.02

 ----------RESPONSE TIME DISTRIBUTION----------
 ----TIME---- --NUMBER OF TRANSACTIONS-- -------PERCENT------- 0 10 20 30 40 50 60 70 80 90 100
 HH.MM.SS.TTT CUM TOTAL IN BUCKET CUM TOTAL IN BUCKET |....|....|....|....|....|....|....|....|....|....|
< 00.00.00.350 60706 60706 93.3 93.3 >>>
<= 00.00.00.420 61345 639 94.3 1.0 >
<= 00.00.00.490 61807 462 95.0 0.7 >
<= 00.00.00.560 62165 358 95.5 0.6 >
<= 00.00.00.630 62454 289 96.0 0.4 >
<= 00.00.00.700 62651 197 96.3 0.3 >
<= 00.00.00.770 62836 185 96.6 0.3 >
<= 00.00.00.840 63012 176 96.8 0.3 >
<= 00.00.00.910 63138 126 97.0 0.2 >
<= 00.00.00.980 63262 124 97.2 0.2 >
<= 00.00.01.050 63362 100 97.4 0.2 >
<= 00.00.01.400 63800 438 98.0 0.7 >
<= 00.00.02.800 64622 822 99.3 1.3 >
> 00.00.02.800 65081 459 100 0.7 >

 W O R K L O A D A C T I V I T Y
 PAGE 31
 z/OS V1R3 SYSPLEX SYSPLEX1 START 12/16/2004-11.00.00 INTERVAL 001.00.02 MODE = GOAL
 CONVERTED TO z/OS V1R2 RMF END 12/16/2004-12.00.02

REPORT BY: POLICY=POLICY01 WORKLOAD=TSOWRKLD SERVICE CLASS=TSOHIGH RESOURCE GROUP=*NONE PERIOD=2 IMPORTANCE=2
 CRITICAL =NONE

TRANSACTIONS TRANS.-TIME HHH.MM.SS.TTT --DASD I/O-- ---SERVICE---- --SERVICE RATES-- PAGE-IN RATES ----STORAGE----
AVG 0.44 ACTUAL 2.577 SSCHRT 58.4 IOC 117766 ABSRPTN 1013 SINGLE 0.0 AVG 1960.25
MPL 0.44 EXECUTION 2.356 RESP 3881.8 CPU 1479K TRX SERV 1012 BLOCK 0.0 TOTAL 870.20
ENDED 529 QUEUED 220 CONN 327.3 MSO 0 TCB 89.7 SHARED 0.0 CENTRAL 870.20
END/S 0.15 R/S AFFINITY 0 DISC 3553.9 SRB 23010 SRB 1.4 HSP 0.0 EXPAND 0.00
#SWAPS 771 INELIGIBLE 0 Q+PEND 0.5 TOT 1620K RCT 0.2 HSP MISS 0.0
EXCTD 0 CONVERSION 25 IOSQ 0.1 /SEC 450 IIT 1.5 EXP SNGL 0.0 SHARED 3.01
AVG ENC 0.00 STD DEV 12.111 HST 0.0 EXP BLK 0.0
REM ENC 0.00 APPL % 2.6 EXP SHR 0.0
MS ENC 0.00

VELOCITY MIGRATION: I/O MGMT 41.2% INIT MGMT 41.2%

 ---RESPONSE TIME--- EX PERF AVG --USING%-- ------------ EXECUTION DELAYS % ------------- ---DLY%-- -CRYPTO%- %
 HH.MM.SS.TTT VEL INDX ADRSP CPU I/O TOTAL CPU I/O UNKN IDLE USG DLY QUIE
GOAL 00.00.03.000 75.0%
ACTUALS
*ALL 83.9% 41.2% 0.8 2.0 1.4 3.0 6.2 4.6 1.7 4.2 85.2 0.0 0.0 0.0
SC01 25.0% 21.1% 1.3 0.0 0.0 18.2 68.2 68.2 0.0 9.1 0.0 0.0 0.0 0.0
SC02 86.5% 42.9% 0.9 0.0 5.6 29.9 47.2 34.5 12.7 17.3 0.0 0.0 0.0 0.0
SC03 95.0% 63.7% 0.5 0.0 5.5 30.8 20.7 7.1 13.6 42.4 0.8 0.0 0.0 0.0
SC04 100% 66.7% 0.9 0.0 18.8 6.3 12.5 0.0 12.5 62.5 0.0 0.0 0.0 0.0
SC05 88.0% 60.3% 0.6 0.0 8.4 39.0 31.2 9.2 22.0 18.2 3.5 0.0 0.0 0.0
SC06 93.1% 42.6% 0.6 0.7 0.8 0.7 2.0 1.5 0.5 1.0 95.5 0.0 0.0 0.0
SC07 79.2% 37.0% 0.9 0.1 11.2 14.8 44.2 36.9 7.4 24.5 5.4 0.0 0.0 0.0
SC08 75.0% 21.4% 0.8 1.1 0.1 0.1 0.5 0.0 0.5 0.0 99.3 0.0 0.0 0.0
SC09 86.7% 38.5% 0.7 0.0 3.4 3.4 10.8 10.1 0.7 5.4 77.7 0.0 0.0 0.0
SC10 76.9% 27.0% 1.0 0.0 2.6 14.7 46.8 42.4 4.4 35.9 0.0 0.0 0.0 0.0

 ----------RESPONSE TIME DISTRIBUTION----------
 ----TIME---- --NUMBER OF TRANSACTIONS-- -------PERCENT------- 0 10 20 30 40 50 60 70 80 90 100
 HH.MM.SS.TTT CUM TOTAL IN BUCKET CUM TOTAL IN BUCKET |....|....|....|....|....|....|....|....|....|....|
< 00.00.01.500 317 317 59.9 59.9 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
<= 00.00.01.800 350 33 66.2 6.2 >>>>
<= 00.00.02.100 386 36 73.0 6.8 >>>>
<= 00.00.02.400 408 22 77.1 4.2 >>>
<= 00.00.02.700 428 20 80.9 3.8 >>>
<= 00.00.03.000 444 16 83.9 3.0 >>
<= 00.00.03.300 460 16 87.0 3.0 >>
<= 00.00.03.600 471 11 89.0 2.1 >>
<= 00.00.03.900 484 13 91.5 2.5 >>
<= 00.00.04.200 487 3 92.1 0.6 >
<= 00.00.04.500 492 5 93.0 0.9 >
222 System Programmer’s Guide to: Workload Manager

<= 00.00.06.000 504 12 95.3 2.3 >>
<= 00.00.12.000 519 15 98.1 2.8 >>
> 00.00.12.000 529 10 100 1.9 >>

 W O R K L O A D A C T I V I T Y
 PAGE 32
 z/OS V1R3 SYSPLEX SYSPLEX1 START 12/16/2004-11.00.00 INTERVAL 001.00.02 MODE = GOAL
 CONVERTED TO z/OS V1R2 RMF END 12/16/2004-12.00.02

REPORT BY: POLICY=POLICY01 WORKLOAD=TSOWRKLD SERVICE CLASS=TSOHIGH RESOURCE GROUP=*NONE PERIOD=3 IMPORTANCE=3
 CRITICAL =NONE

TRANSACTIONS TRANS.-TIME HHH.MM.SS.TTT --DASD I/O-- ---SERVICE---- --SERVICE RATES-- PAGE-IN RATES ----STORAGE----
AVG 10.84 ACTUAL 1.07.680 SSCHRT 317.3 IOC 593935 ABSRPTN 334 SINGLE 0.0 AVG 2416.68
MPL 10.80 EXECUTION 1.07.661 RESP 117819M CPU 11997K TRX SERV 333 BLOCK 0.0 TOTAL 26108.2
ENDED 152 QUEUED 19 CONN 145.5 MSO 0 TCB 698.6 SHARED 0.0 CENTRAL 26108.2
END/S 0.04 R/S AFFINITY 0 DISC 117819M SRB 412471 SRB 24.2 HSP 0.0 EXPAND 0.00
#SWAPS 5275 INELIGIBLE 0 Q+PEND 0.4 TOT 13003K RCT 2.8 HSP MISS 0.0
EXCTD 0 CONVERSION 0 IOSQ 0.0 /SEC 3613 IIT 7.0 EXP SNGL 0.0 SHARED 85.01
AVG ENC 0.00 STD DEV 8.58.264 HST 0.0 EXP BLK 0.0
REM ENC 0.00 APPL % 20.3 EXP SHR 0.0
MS ENC 0.00

VELOCITY MIGRATION: I/O MGMT 32.4% INIT MGMT 32.4%

 ---RESPONSE TIME--- EX PERF AVG --USING%-- ------------ EXECUTION DELAYS % ------------- ---DLY%-- -CRYPTO%- %
 HH.MM.SS.TTT VEL INDX ADRSP CPU I/O TOTAL CPU I/O UNKN IDLE USG DLY QUIE
GOAL 00.00.10.000 50.0%
ACTUALS
*ALL 68.4% 32.4% 0.6 23.4 0.9 1.3 4.7 4.1 0.5 6.1 87.0 0.0 0.0 0.0
SC01 0.0% 0.2% N/A 1.0 0.1 0.0 27.5 27.5 0.0 1.2 71.2 0.0 0.0 0.0
SC02 100% 80.0% 0.6 0.0 20.0 60.0 20.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0
SC03 45.5% 62.9% 1.1 14.6 1.2 1.7 1.7 1.0 0.6 9.0 86.5 0.0 0.0 0.0
SC04 0.0% 5.9% N/A 2.0 0.1 0.0 1.5 1.5 0.0 0.0 98.4 0.0 0.0 0.0
SC05 68.4% 18.6% 0.7 0.2 4.4 7.8 53.2 48.8 4.4 8.4 26.1 0.0 0.0 0.0
SC06 95.5% 19.0% 0.5 2.4 0.3 0.2 2.3 2.2 0.1 0.8 96.4 0.0 0.0 0.0
SC07 67.1% 13.8% 0.5 2.2 0.9 1.5 15.0 14.4 0.6 1.8 80.7 0.0 0.0 0.0
SC08 100% 0.0% 0.5 0.9 0.0 0.0 0.1 0.1 0.0 0.0 100 0.0 0.0 0.0
SC09 50.0% 30.3% 0.6 0.1 0.9 20.3 48.8 42.6 6.2 30.0 0.0 0.0 0.0 0.0

 ----------RESPONSE TIME DISTRIBUTION----------
 ----TIME---- --NUMBER OF TRANSACTIONS-- -------PERCENT------- 0 10 20 30 40 50 60 70 80 90 100
 HH.MM.SS.TTT CUM TOTAL IN BUCKET CUM TOTAL IN BUCKET |....|....|....|....|....|....|....|....|....|....|
< 00.00.05.000 74 74 48.7 48.7 >>>>>>>>>>>>>>>>>>>>>>>>>
<= 00.00.06.000 85 11 55.9 7.2 >>>>
<= 00.00.07.000 93 8 61.2 5.3 >>>
<= 00.00.08.000 97 4 63.8 2.6 >>
<= 00.00.09.000 101 4 66.4 2.6 >>
<= 00.00.10.000 104 3 68.4 2.0 >>
<= 00.00.11.000 107 3 70.4 2.0 >>
<= 00.00.12.000 110 3 72.4 2.0 >>
<= 00.00.13.000 112 2 73.7 1.3 >
<= 00.00.14.000 112 0 73.7 0.0 >
<= 00.00.15.000 114 2 75.0 1.3 >
<= 00.00.20.000 118 4 77.6 2.6 >>
<= 00.00.40.000 130 12 85.5 7.9 >>>>>
> 00.00.40.000 152 22 100 14.5 >>>>>>>>

Consider setting TSO goals so that most of the trivial transactions that use a low percentage
of CPU end in the first period.

Analyzing the Response Time (RT) distribution, you can adjust your percentile goal based on
the percentage IN BUCKET value. The percentages of execution delays show you which is
the major bottleneck impacting your goal.

For a complete description of the fields in RMF reports, see z/OS V1R6.0 Resource
Measurement Facility (RMF) Report Analysis, SC33-7991.
Chapter 7. TSO, STC, and APPC workloads 223

7.6 General considerations for STC
Many types of work within a z/OS system today run, or can be run, as a started task. For
example, you can run CICS systems as started tasks (or as batch jobs) along with many
system address spaces, including VTAM, JES, LLA, VLF, WLM, and many others.

WLM provides two internal service classes for this type of workload: SYSTEM and SYSSTC.
These service classes are assigned by default to system functions.

STC address spaces are assigned to a default service class depending upon attributes
specified on the ASCRE (create address space) macro and depending on whether the task is
a system task or a privileged task. There is no external control of the HIPRI attribute of the
ASCRE macro for started tasks. Table 7-1 shows the default assignments of service classes
for started task address spaces.

Table 7-1 STC service class assignments

In Table 7-1:

� DP = dispatching priority
� SC = service class name
� STC = started task subsystem type

SYSTEM service class
As you can see in Table 7-1, you can classify a non-system task or a non-privileged task in
the SYSTEM service class, if the ASCRE macro that created the address space has the
HIPRI attribute specified.

The system address spaces are automatically assigned to the SYSTEM internal service
class.

Examples of these system tasks are:

� MASTER
� GRS
� DUMPSRV
� SMF
� CATALOG
� RASP
� XCFAS
� CONSOLE
� IOSAS
� SMSPDSE
� ANTMAIN
� JESXCF
� ALLOCAS
� IXGLOGR
� WLM

ASCRE attribute Privileged or system task Neither privileged nor system task

HIPRI SC = ’SYSTEM’
DP = x ’FF’

SC = ’SYSTEM’
DP = x ’FF’

NONURG SC = ’SYSSTC’
DP = x ’FE’

SC = default for STC
DP = managed to SC goal
224 System Programmer’s Guide to: Workload Manager

The system goal always has DP=255, IOP=255, and there is no specific storage protection
because they are cross-memory servers. If the caller’s address space suffers page faults,
then storage protection is activated.

You do not need to create classification rules for them. However, if you want a report for
some system address spaces, you must put them in the classification rules. You can see this
in Example 7-4 on page 227.

If you want to control system address spaces, you can define a service class for them by
specifying a classification rule in the STC subsystem entry. We do not recommend this way of
managing system address space, and you must take this action very carefully. The system
address spaces that you change might lose the high dispatching priority attribute and run at
the dispatching priority of the assigned service class period. You can restore the high
dispatching priority attribute by one of the following methods:

� Using the RESET operator command:

E stcname,SRVCLASS=SYSTEM

� Changing the classification rules to explicitly classify the started task to SYSTEM and
activate the policy.

SYSSTC service class
System tasks are those tasks with the privileged and system task attribute specified in the
IBM-supplied program properties table (PPT). To add a new definition or override the default
PPT entries, use the SCHEDxx PARMLIB member. Refer to z/OS Initialization and Tuning
Reference, SA22-7592, for a description of SCHEDxx and PPT entries.

SYSSTC is the default service class for started tasks that are not classified in the SYSTEM
service class, unless you provide another default in SUBSYS=STC.

The SYSSTC service class has DP=254, IOP=254, and no specific storage protection,
because the address spaces are cross-memory servers. The multiprogramming level (MPL)
is fixed and very high, resulting in no OUTR swaps for swappable STC address spaces. This
is where important, light CPU address spaces, such as VTAM, JES, and IRLM should run. If
you want to define a service class for some of these address spaces, we recommend that you
use a high importance and high velocity goals.

We recommend that you classify all the STC with an adequate service class.

It is good practice to provide a default service class in the classification rules for subsystem
type STC with a low importance so that any unclassified STC does not cause any
performance issues. We recommend that you assign high importance tasks here such as
VTAM, JESx, VLF, LLA, IRLM, TSO, monitors, auto operator packages, the OMVS kernel,
APPC, and ASCH. You can create a transaction name group (TNG) for them and then define
the group in classification rules.

A CPU-intensive started task is not appropriate for SYSSTC, because the task might use a
large amount of processor cycles. However, if your processor is lightly loaded, SYSSTC
might be appropriate, because that one task might not affect the ability of the remaining
processors to manage the important work.

Note: *MASTER*, WLM, and some other system-controlled address spaces always run in
the SYSTEM service class and cannot be reassigned via the service definition or via the
RESET command.
Chapter 7. TSO, STC, and APPC workloads 225

7.7 Classification rules for STC
A system address space always has SYSTEM or SYSSTC service class assigned.
Non-system STCs, which are not classified, go to the default STC service class.

After choosing those started tasks to classify in the SYSSTC and SYSTEM service class,
collect the others into a small number of similar groups, from higher to lower importance. We
suggest three or four groups at a maximum. You can increase the velocity goal value,
according to the importance of the group.

Usually started tasks are long-running address spaces. You can create a service class for
short-running STCs, assigning them a percentile response time goal if you have at least ten
ended transactions within 20 minutes.

Because the Transaction Managers (CICS, IMS, DB2, and so on) are long-running batch jobs
or started tasks, you should assign them to a velocity goal. When setting a velocity goal for
these STCs, set a goal that enables the regions to run sufficiently so the transactions they
serve will meet the service level objectives.

When the Transaction Managers address spaces start up, they are classified as batch jobs or
started tasks and are assigned a service class. When classified, they are managed by WLM
to meet their specified velocity goals. You must specify a goal for the Transaction Manager’s
address spaces in order to ensure timely initialization during startup and proper treatment
when they are not processing any transactions for a long period of time.

Normally, you do not define multiple service class periods for started tasks. They usually
perform services for other address spaces and are long-running address spaces.
Consequently, there is no reason to give them a lower priority as service consumption grows.
Maybe, in cases where you have problems starting your online system in the middle of the
day after an unscheduled outage, you can consider creating a service class with two periods:
The first with a very high velocity goal and duration enough to complete initialization, and the
second with normal velocity.

For classification rules, you can use the following qualifiers:

� Accounting Information (AI)
� Perform (PF)
� Perform Group (PFG)
� Sysplex Name (PX)
� Subsystem Parameter (SPM)
� Sysname (SY)
� Sysname Group (SYG)
� Transaction Name (TN)
� Transaction Name Group (TNG)
� Userid (UI)
� Userid Group (UIG)

Do not worry if you see some address spaces such as IRLM and VTAM with low execution
velocity. This can happen when idle time is high, because WLM does not include idle time
samples in the velocity calculation. WLM samples the state of each address space and
enclave every quarter second. Consider 15 minutes, 3600 samples: If VTAM is 98% idle, only
72 samples are available for velocity calculation. A few delay samples can cause relatively
large swings in velocity.
226 System Programmer’s Guide to: Workload Manager

7.8 Types of goals for STC
All system address spaces should use SYSTEM or SYSSTC service class. You do not need
to specify any goals for these service classes.

Because the non-system STCs are usually long-running address spaces, they should be
assigned to a velocity goal. Keep in mind when setting a velocity goal for non-system STCs
that it is better to set a goal that allows them to run sufficiently so the transactions they serve
will meet their service level objectives.

7.9 Best practices for STC
All system-related address spaces should be classified to service class SYSTEM and all
address spaces that either support the system or the operation of it should be classified to
SYSSTC. We strongly recommend that you use the System Parameter (SPM) qualifier for the
STC subsystem to classify all system tasks to SYSTEM or SYSSTC.

Example 7-4 shows a sample of a classification for a started task based on:

� Any started tasks not explicitly classified are given low priority.

� Started tasks are defined in three transaction name groups: STCHI, STCMED, and
STCLOW.

� System defaults are used for MVS-owned address spaces.

� Separate reporting is used for *MASTER* and GRS.

Example 7-4 General STC classification

Subsystem-Type Xref Notes Options Help
--
 Modify Rules for the Subsystem Type Row 1 to 11 of 11
Command ===> __ SCROLL ===> PAGE

Subsystem Type . : STC Fold qualifier names? Y (Y or N)
Description . . . ________________________________

Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 --------Qualifier-------- -------Class--------
Action Type Name Start Service Report
 DEFAULTS: SCSTCLOW ________
 ____ 1 TN *MASTER* ___ SYSTEM MASTER
 ____ 1 TN GRS ___ SYSTEM GRS
 ____ 1 TNG DB2 ___ SYSSTC ________
____ 1 TN %%%%IRLM ___ SYSSTC ________
____ 1 SPM SYSTEM ___ SYSTEM ________
____ 1 SPM SYSSTC ___ SYSSTC ________
 ____ 1 TN PCAUTH ___ SYSTEM ________
 ____ 1 TN TRACE ___ SYSTEM ________
 ____ 1 TN JES2AUX ___ SYSSTC ________
 ____ 1 TN ANTAS000 ___ SYSSTC ________
 ____ 1 TN RRS ___ SYSSTC ________
____ 1 TNG STCHI ___ SCSTCHI ________
 ____ 1 TNG STCMED ___ SCSTCMED ________
 ____ 1 TNG STCLOW ___ SCSTCLOW ________
Chapter 7. TSO, STC, and APPC workloads 227

Example 7-4 on page 227 shows the use of the SPM rules. It assigns started tasks created
with the high dispatching priority attribute to SYSTEM, and other privileged or system tasks to
SYSSTC. In this way, WLM will manage started tasks that are recognized as special.

Note that explicitly defining the SPM rules, as in Example 7-4 on page 227, is optional. If they
were removed from the example, then the high dispatching priority work is still assigned to
SYSTEM, and the other privileged or system tasks are still assigned to SYSSTC, because
those are the defaults. The reason for explicitly defining them here with the SPM rules is to
protect yourself from inadvertently assigning them elsewhere in the rules that follow the SPM
rules.

We recommend that you classify at least JES2AUX, RRS, and ANTAS000 to SYSSTC.
PCAUTH and TRACE should run at the highest priority (SYSTEM service class) to avoid
contention on their own local lock when the system is at high CPU usage. Refer to APARs
OA05709 and OA08960 for further details.

In addition, Example 7-4 on page 227 shows that the IRLM address spaces are classified to
SYSSTC. In general, IRLM requires fast access to the CPU and does not consume too much
of it. Therefore, it is predestined to get classified to SYSSTC.

You can use a similar rule for other work. If the work is very CPU sensitive, uses only very
little of it (less than 5% of one CP), and does not show abrupt and high CPU demand, you can
classify it to SYSSTC.

You can follow this rule as long as the total amount of work in SYSSTC does not increase too
much. Your installation should try to keep the total CPU consumption of the SYSTEM and
SYSSTC service classes below 10 to 15% of the total system capacity.

The first rule assigns *MASTER* to report class MASTER. (Note that “SYSTEM” is shown in
the service class column. In this case, it is not a true assignment, because *MASTER* must
always run in the SYSTEM service class anyway.) *MASTER* can also be classified using
the SPM SYSTEM rule, but because separate reporting is wanted for *MASTER*, it is
classified separately. GRS is handled similarly.

The DB2 subsystem is defined in IBM-supplied PPT with the system task attribute to assign
DB2 address spaces to SYSSTC. If you do not want this assignment, you need to group DB2
address spaces (MSTR, DBM1, DIST, and SPAS), assign them to a TNG, and associate the
group to a high importance service class. You need to define this rule before any SPM
entries.

Started tasks in the STCHI transaction name group are assigned to service class SCSTCHI,
STCMED in SCSTCMED, and STCLOW in SCSTCLOW. The goals on the service classes
use importance to guarantee that started tasks of low value are sacrificed if necessary to
keep medium-value started tasks meeting goals. This does not guarantee any relationship
between the dispatching priorities that will be observed for service classes SCSTCMED and
SCSTCLOW.

For a better analysis of the STCs, including the system STCs, consider assigning a report
class in your classification rules in order to have the most granularity in your RMF reports.

Important: The placement of these SPM rules is crucial. If they had been declared first,
then the two TN rules intended to assign *MASTER* and GRS to report classes would
have never been reached.
228 System Programmer’s Guide to: Workload Manager

7.10 Reporting for STC
Because the STCs have different specifications for workloads and importance (CICS, DB2,
HSM, monitors, non-IBM products, and so on), approach the STC analysis from a subsystem
point of view.

If you have created specific reporting classes for your analysis, look at the report class
section of your RMF WLKD Activity report in order to find out how that STC (or group of
STCs) is performing.

Example 7-5 shows a sample report where you can evaluate the performance of the SYSSTC
service class.

Example 7-5 RMF Workload Activity report for STC

W O R K L O A D A C T I V I T Y
 PAGE 13
 z/OS V1R6 SYSPLEX WTSCPLX1 START 03/28/2005-12.00.00 INTERVAL 000.59.59 MODE = GOAL
 RPT VERSION V1R5 RMF END 03/28/2005-12.59.59

 POLICY ACTIVATION DATE/TIME 03/28/2005 10.55.32

-- SERVICE CLASS PERIOD

REPORT BY: POLICY=SPSTPC WORKLOAD=SYSTEM SERVICE CLASS=SYSSTC RESOURCE GROUP=*NONE PERIOD=1 IMPORTANCE=SYSTEM
 CRITICAL =NONE

TRANSACTIONS TRANS.-TIME HHH.MM.SS.TTT --DASD I/O-- ---SERVICE---- --SERVICE TIMES-- PAGE-IN RATES ----STORAGE----
AVG 45.56 ACTUAL 9.18.375 SSCHRT 85.6 IOC 861983 TCB 84.7 SINGLE 0.0 AVG 6531.42
MPL 45.55 EXECUTION 9.18.239 RESP 129.6 CPU 1758K SRB 37.0 BLOCK 0.0 TOTAL 297512
ENDED 87 QUEUED 135 CONN 2.5 MSO 2856K RCT 0.5 SHARED 0.0 CENTRAL 297512
END/S 0.02 R/S AFFINITY 0 DISC 125.9 SRB 767819 IIT 3.6 HSP 0.0 EXPAND 0.00
#SWAPS 2965 INELIGIBLE 0 Q+PEND 0.8 TOT 6244K HST 0.0 HSP MISS 0.0
EXCTD 0 CONVERSION 12 IOSQ 0.4 /SEC 1734 IFA N/A EXP SNGL 0.0 SHARED 2784.82
AVG ENC 0.00 STD DEV 18.12.960 APPL% CP 3.5 EXP BLK 0.0
REM ENC 0.00 ABSRPTN 38 APPL% IFACP 0.0 EXP SHR 0.0
MS ENC 0.00 TRX SERV 38 APPL% IFA N/A
GOAL: SYSTEM

 RESPONSE TIME EX PERF AVG --- USING% --- ---------- EXECUTION DELAYS % --------- ---DLY%-- -CRYPTO%- ---CNT%-- %
SYSTEM VEL% INDX ADRSP CPU IFA I/O TOT CPU I/O UNKN IDLE USG DLY USG DLY QUIE

SC69 --N/A-- 32.6 106.9 0.0 N/A 0.1 0.3 0.2 0.1 12.3 87.3 0.0 0.0 0.0 0.0 0.0

The most interesting fields for the STC performance analysis are:

� APPL% CP: This field shows the used percentage of a CP in the interval.

� PERF INDX (not shown in the cases of SYSTEM and SYSSTC service classes): It is the
calculated PI for the interval.

� EXECUTION DELAYS %: The delays under control of WLM and SRM.

� DLY%: The delays not controlled by WLM and SRM.

� IOSQ: It is the IOS UCB delay (software queue).

The PI, APPL%, and VEL fields are a good starting point to evaluate the performance and to
understand if there is any potential problem in your system.

You can find more details about this report in z/OS V1R6.0 Resource Measurement Facility
(RMF) Report Analysis, SC33-7991.
Chapter 7. TSO, STC, and APPC workloads 229

7.11 General considerations for APPC
WLM recognizes APPC work that has been scheduled by the APPC scheduler (ASCH). If
your installation uses a different APPC scheduler, you need to consult the product's
documentation for information about classifying its transactions. Figure 7-2 shows APPC
communications using an ASCH scheduler.

Figure 7-2 APPC environment using ASCH scheduler

An APPC transaction begins when the ASCH address space schedules a transaction
program. That program is then started in an APPC initiator address space. This concept is
very similar to the JES subsystem scheduling a batch job. The APPC transaction ends when
the program returns to the initiator, similar to the completion of a batch job. Just as there are
different profiles for batch jobs, there are different types of APPC transaction programs.

Your installation can use the VTAM generic resources function to improve availability and
balance its APPC workload across the systems in a sysplex. VTAM passes to WLM the list of
eligible APPLn instances. When all the systems in the sysplex have applications in this
generic resources group, then WLM checks its service policy and checks the loading on each
of the APPLn address spaces. It then chooses the instance that it calculates as the best
instance able to handle a new session while meeting the service goals. WLM tells VTAM
which APPLn it has chosen.

7.12 Classification rules for APPC
As with TSO and STCs, APPC work also needs to be classified using the WLM application.
From the subsystem types, you have to select the ASCH entry in order to specify your APPC
rules.

TP Profile Schedule
Policy

APPC
Address
Space

APPC/MVS
Transaction
Scheduler
Address
SpaceAllocate

Queue

*
*
*

APPC
VTAM

Side
Information

Server
Address
Space

APPC/MVS
Transaction
Initiator

APPC
TP

Calls

APPC/MVS
Transaction Initiators
230 System Programmer’s Guide to: Workload Manager

For classification rules, use these qualifiers:

� Accounting Information (AI)
� Sysplex Name (PX)
� Sysname (SY)
� Sysname Group (SYG)
� Transaction Class (TC)
� Transaction Class Group (TCG)
� Transaction Name (TN)
� Transaction Name Group (TNG)
� Userid (UI)
� Userid Group (UIG)

7.13 Types of goals for APPC
The type of goal you choose depends on the type of APPC Transaction Program (TP):

� If your installation is sure that all TPs will process a single request and have at least ten
completions in 20 minutes, then the service class for these transactions can contain
multiple periods with response time goals.

� Many APPC transaction programs keep a permanent, or lengthy, network connection and
repeatedly process individual conversations across that network. These long-running
transaction programs might stay connected to the network for an indeterminate time
period. In these cases, you need to use a velocity goal.

If you are not sure that an APPC transaction program starts and ends for each network
interaction, it is best to assign APPC transactions to single period service classes with
velocity goals.

7.14 Best practices for APPC
By default or via SPM rules, ASCH and APPC address spaces are assigned to the SYSSTC
service class. This ensures that the scheduler can quickly process requests for new APPC
transaction programs.

7.15 Reporting for APPC
You can adjust your goals by using the RMF Workload Activity Report for the APPC service
classes that you defined. You can obtain the number of ended transactions, the average
response time, and velocity from periods representing peak periods for the ASCH workload.
This information can help you adjust the service class goals.
Chapter 7. TSO, STC, and APPC workloads 231

232 System Programmer’s Guide to: Workload Manager

Chapter 8. DB2 workload considerations

This chapter provides a description of the characteristics of a DB2 workload, how to classify
the different types, and how to report the related data.

8

© Copyright IBM Corp. 2005, 2006, 2007. All rights reserved. 233

8.1 General considerations
There are functions in DB2 that are important for business intelligence applications (sysplex
query parallelism) or that are client/server-oriented (stored procedures). These new functions
exploit workload manager (WLM) in order to improve performance management.

8.2 DB2 address spaces
Next, we describe how to set goals for DB2 environment management.

For DB2 address spaces, velocity goal is the appropriate goal. A small amount of the work
done in DB2 is counted toward this velocity goal. Most of the DB2 threads work applies to the
user goal.

8.2.1 DB2 address space velocity goals
This section tells you how to classify DB2 address spaces in order to satisfy the required
velocity goals.

Use the following service classes for non-DBMS address spaces:

� SYSSTC service class for:

– VTAM and TCP/IP address spaces
– IRLM address space (IRLMPROC)

� An installation-defined service class with a high velocity goal for:

– DB2 (all address spaces, except for the DB2-established stored procedures address
space):

• %%%%MSTR
• %%%%DBM1
• %%%%DIST (DDF address space)

When you set response time goals for Distributed Data Facility (DDF) threads or for stored
procedures in a WLM-established address space, the only work that is controlled by the DDF
or stored procedures velocity goals is the DB2 service tasks (work performed for DB2 that
cannot be attributed to a single user). The user work runs under separate goals for the
enclave.

For the DB2-established stored procedures address space, use a velocity goal that reflects
the requirements of the stored procedures in comparison to other application work. Usually, it
is lower than the goal for DB2 address spaces, but it might be equal to the DB2 address
space depending on what type of distributed work your installation does.

Consider the following other workload management considerations:

� IRLM must be eligible for the SYSSTC service class. To make IRLM eligible for SYSSTC,
you do not need to classify IRLM to one of your own service classes.

Important: The VTAM, TCP/IP, and IRLM address spaces must always have a higher
dispatching priority than all of the DBMS address spaces, their attached address
spaces, and their subordinate address spaces. Do not allow WLM to reduce the priority
of VTAM, TCP/IP, or IRLM to or below the priority of the other database management
system (DBMS) address spaces.
234 System Programmer’s Guide to: Workload Manager

� If you need to change a goal, change the velocity between 5 and 10%. Velocity goals do
not translate directly to priority. Higher velocity tends to have higher priority, but this is not
always the case.

� If you use I/O Priority management, WLM can assign I/O priority (based on I/O delays)
separately from processor priority.

� z/OS workload management dynamically manages storage isolation to meet the goals you
set.

8.2.2 WLM bufferpool management
DB2 bufferpools can occupy a large amount of storage. Starting with z/OS 1.8, bufferpool
storage management is integrated with the WLM management of storage resources to assist
in adjusting the size of a bufferpool. Bufferpool users can be CICS or IMS transactions
represented by a Performance Block or DDF enclaves represented by a new bufferpool
management only Performance Block. The bufferpool size and its hit ratio are recorded in this
Performance Block.

In cooperation with WLM, DB2 is now able to efficiently manage the size of its buffer pools in
a way that WLM can recommend DB2 to increase or decrease the bufferpool sizes. As an
result, a new subsystem wait state BPMI is available indicating that the work manager is
waiting for I/O because of a DB2 bufferpool miss. RMF indicates this new wait state in the
state samples breakdown in the Subsystem section of the Postprocessor WLMGL report and
in the Response Time Breakdown section of the Monitor III SYSWKM report.

8.2.3 How DB2 assigns I/O priorities
DB2 informs z/OS about which address space's priority is to be associated with a particular
I/O request, and WLM handles the management of the request. Table 8-1 describes which
enclave or address space is associated with I/O read requests.

Table 8-1 How read I/O priority is determined

Table 8-2 describes to which enclave or address space DB2 is associated with the I/O write
requests.

Table 8-2 How write I/O priority is determined

Note: WLM algorithms verify the bufferpool size and adjust it if necessary. To prevent out
of storage conditions, WLM tries to take storage from other bufferpools first.

Request type Synchronous reads Prefetch reads

Local Application's address space Application's address
space

DDF or sysplex query
parallelism (assistant only)

Enclave priority Enclave priority

Request type Synchronous writes Deferred writes

Local Application's address space ssnmDBM1 address
space

DDF or sysplex query
parallelism (assistant only)

DDF address space ssnmDBM1 address
space
Chapter 8. DB2 workload considerations 235

8.3 DB2 distributed environment
This section describes ways that you can tune your systems and applications that use
Distributed Relational Database Architecture™ (DRDA) or DB2 private protocol for distributed
data access.

DB2 supports two types of remote access between the requesting relational database
management system (DBMS) and the serving relational database management system. The
two types of access are DRDA access and DB2 private protocol access. When three-part
named objects are referenced (or aliases for three-part name objects are referenced), DB2
chooses between the two connection types based on the bind option that you choose (or the
default protocol set at your site).

Refer to DB2 UDB for z/OS V8 Administration Guide, SC18-7413, for a complete description
of DRDA and private protocol.

8.3.1 Thread and enclave relationship
Database access threads are created to access data at a DB2 server on behalf of a requester
using either DRDA or DB2 private protocol. A database access thread is created when an
SQL request is received from the requester. Allied threads perform work at a requesting DB2.

Database access threads have two modes of processing: ACTIVE MODE and INACTIVE
MODE.

� ACTIVE MODE: A database access thread is always active from initial creation to
termination.

� INACTIVE MODE: A database access thread can be active or pooled. (A database access
thread that is not currently processing a unit of work is called a pooled thread, and it is
disconnected.) When a database access thread in INACTIVE MODE is active, it
processes requests from client connections within units of work. When a database access
thread is pooled, it waits for the next request from a client to start a new unit of work.

Only when in INACTIVE MODE, a database access thread is terminated after it has
processed 200 units of work or after the database access thread has been idle in the pool for
a specified amount of time.

Refer to DB2 UDB for z/OS V8 Administration Guide, SC18-7413, for a complete description
of DB2 threads in a distributed environment.

8.3.2 Duration of an enclave
The duration of an enclave differs between Active and Inactive mode; for this reason, the data
reported in the SMF 72 record depends on the type of thread:

� INACTIVE MODE threads are treated differently. If the thread is always active, the duration
of the thread is the duration of the enclave. When the thread is pooled, such as during

Important: We recommend using DRDA if you are developing new applications and to
migrate existing private protocol applications to DRDA, because no enhancements are
planned for private protocol.

Note: For every database access thread, an independent enclave is created. The way
DDF uses enclaves relates directly to whether the DDF thread can become inactive.
236 System Programmer’s Guide to: Workload Manager

think time, it is not using an enclave. In this case, the SMF 72 record does not report
inactive periods.

� ACTIVE MODE threads are treated as a single enclave from the time they are created until
the time they are terminated. Therefore, the entire life of the database access thread is
reported in the SMF 72 record, regardless of whether SQL work is actually processed.

Figure 8-1 contrasts the two types of threads.

Figure 8-1 Contrasting ACTIVE MODE threads and POOLED MODE threads

8.3.3 DDF enclave creation
One DB2 request (transaction) is received by DDF from the network. DDF creates an enclave
to process the SQL request using a DB2 thread. The thread executes DB2 code in
cross-memory mode under the enclave priority. If data is missing, synchronous I/O requests
are started during SQL processing. When data is retrieved, I/O interrupt processing is done
by the DB2 DBM1 address space and control is returned to the DDF DB2 thread under the
enclave priority. The SQL result is sent to the requester and the enclave is deleted as soon as
the transaction ends.

The activity flow is shown in Figure 8-2 on page 238.
Chapter 8. DB2 workload considerations 237

Figure 8-2 DDF independent enclave creation

8.3.4 Classification rules for a distributed environment
DDF receives requests from different clients: DB2 and other vendors’ software. Each request
becomes an enclave. You need to classify each request, because if you do not classify your
DDF transactions into service classes, they are assigned to the default class with a
discretionary goal.

You can have multiple filters to classify DDF threads, for example, their authorization ID,
package name, user ID, or plan name. For a complete list, refer to z/OS V1R8.0 MVS
Planning Workload Management, SA22-7602. Example 8-1 shows how to classify the remote
requests.

Example 8-1 Classification rules for a distributed environment

Modify Rules for the Subsystem Type Row 1 to 14 of 14
Command ===> __ SCROLL ===> PAGE

Subsystem Type . : DDF Fold qualifier names? Y (Y or N)
Description . . . DRDA Distributed Transactions

Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 --------Qualifier-------- -------Class--------
Action Type Name Start Service Report
 DEFAULTS: SCDB2LOW ________
 ____ 1 SI DB8E ___ SCDB2MED ________
 ____ 2 UI GIAN ___ SCDB2HI RCGIAN_
 ____ 2 PN DIST* ___ SCDB2LOW RCDIST__
 ____ 1 SI DB2B ___ SCDB2MED
 ____ 2 UI ANNA ___ SCDB2HI RCANNA__
 ____ 2 AI PAYROLL ___ SCDB2HI RCPAY___

Network

DB2DIST (DDF) DB2 DB2M1 AS

SRB
for I/O

Code is
executed in
DBM1 asid

under
Enclave
control.

SQL
processing
may start

synchronous
I/O requests
for DB2 data Enclave

SQL
execution

DB2 thread

Cross Memory
communication

I/O
238 System Programmer’s Guide to: Workload Manager

We recommend that you use inactive threads with a two-period service class where the
response time and the duration for the first period are defined in such a way that 80-90% of
the transactions complete in the first period.

In Example 8-1 on page 238, the requests are handled by subsystem instance DB8E and are
assigned by default to service class SCDB2MED. If the request comes from user ID Gian, it is
associated to service class SCDB2HI, while the request with a plan name starting with DIST* is
assigned to service class SCDB2LOW. Requests handled by subsystem instance DB2B are
assigned by default to service class SCDB2MED. If the request comes from user ID Anna, it will
be associated to service class SCDB2HI, while the request with accounting ID PAYROLL is
assigned to service class SCDB2HI.

Considerations for JDBC requests
JDBC™ sends its requests to DB2 using Driver Type-2 or Driver Type-4.

The work of Type-2 comes from WebSphere Application Server to DB2 and it is classified
under CB subsystem type. You are not required to classify it under DDF subsystem type.

For the Type-4/DDF workload, the DDF rules allow us to do classification. Not all of the DDF
qualifiers are usable; for example, all the JDBC applications use the same packages so it is
not a useful filter. If you want to base prioritization on application behavior, you can classify
based upon the first stored procedure called in a transaction, but it is only usable if you call a
stored procedure.

A simple approach is to use a different data source within WebSphere Application Server for
each classification and programmatically use a specific data source. Each data source has
either a different AUTHID associated with it or a JDBC driver collection. You can classify
based upon either of those.

The only other approach is to use the DB2 client strings. The client strings are text attributes
associated with the connection, which we can use for classification of the workload. The client
strings can be set as a part of the data source definition or alternatively you can set them
programmatically within the application so that every transaction can have a different value.
We can use the client strings for workload classification, and we can also use them for
end-to-end auditing (the fields are written in DB2 accounting reports). The recommended
client strings are application name and user ID.

8.3.5 Types of goal
You can establish performance periods for DDF threads so that you can cause the thread’s
performance objectives to change based upon the thread’s processor consumption. Thus, a
long-running unit of work can move down the priority order and let short-running transactions
get in and out at a higher priority.

To design performance strategies for these threads, take into account the events that cause a
DDF thread to reset its performance period. The performance period is reset by terminating
the enclave for the thread and creating a new enclave for the thread, as described in 8.3.2,
“Duration of an enclave” on page 236.

Because threads that are always active do not terminate the enclave and thus do not reset
the performance period to the first period, a long-running thread always ends up in the last
performance period. Any new business units of work that use that thread will suffer the

Note: For a detailed description and samples of how to classify DB2 Stored Procedures,
refer to DB2 for z/OS Stored Procedures: Through the Call and Beyond, SG24-7083.
Chapter 8. DB2 workload considerations 239

performance consequences. This makes performance periods unattractive for long-running
threads. For always active threads, therefore, use velocity goals and use a single-period
service class.

In Active mode, the enclave is classified when it starts. If the enclave is reused by different
work with different goals, all work is assigned to the goal of the enclave; that is, it is classified
using the characteristic of the first work joining the enclave.

You need to know how your distributed environment is configured before you define the
goals.

8.3.6 Best practices
Evaluate filtering the remote requests using Subsystem Instance rule as the level 1 rule in
order to separate different DB2 environments (for example, test and production). Then use
the other available filters for the subsequent levels of classifications. Example 8-1 on
page 238 implements this suggestion.

Because DDF receives requests of work from several clients that could also use dynamic
queries, it is not easy to foresee peaks of workload introduced by unexpected long-running
transactions. A way to circumvent this situation is to divide the known workloads in groups
based on the types of query (static or dynamic). Then, for transactions using dynamic queries
(more difficult to handle), assign a service class with a Resource Group specifying a MAX
threshold in order to limit the CPU consumption.

For a better analysis of your workload, consider using report classes in your DDF
classification rules in order to have the most granularity in your RMF reports.

8.3.7 Enclave reporting
The two most frequently used SMF records are types 30 and 72. The type 30 record contains
resource consumption at the address space level. You can pull out total enclave usage from
the record, but you must use DB2 accounting traces to see resource consumption for a
particular enclave.

Each enclave reports its data to one type 72 record for the service class and to a type 72
record for the report class if specified in the service policy. You can use Workload Manager
(WLM) classification rules to separate different enclaves into different service or report
classes. Separating the enclaves in this way enables you to understand the DDF work better.

There is no separated SMF record for enclave except for multi-system enclave.

Table 8-3 shows the characteristics and accounting for each type of enclave.

Table 8-3 Enclave accounting

Independent Dependent Foreign

Dispatchable unit SRB/TCB SRB/TCB SRB/TCB

New transaction Yes No No

Owner Home address space
at time of IWM4ECRE

Home address space
at time of IWM4ECRE

Home address space
at time of IWM4ECRE

Server Address space where
enclave work is

dispatched

Address space where
enclave work is

dispatched

Address space where
enclave work is

dispatched
240 System Programmer’s Guide to: Workload Manager

The RMF Workload Activity report summarizes resource consumption depending on the type
of the enclave:

� Independent enclave:

– CPU is accounted to the enclave service class.
– I/O and MSO are accounted to the server address space service class.

� Dependent enclave:

– CPU, MSO, and I/O are accounted to the server address space service class.

RMF Workload Activity report
Example 8-2 shows an RMF Report for a distributed data facility (DDF) service class:

� All storage-reported fields are zeros.

� In the Transactions section, you can see all of the information related to the enclaves: The
average number of enclaves and how many ended in the interval.

� Only CPU Service Units are accounted and they should be accounted as TCB. The fields
SRB, RCT, IIT, and HSt should be zeros.

Example 8-2 RMF post-processor for an independent enclave (DDF)

REPORT BY: POLICY=FIRSTPOL WORKLOAD=DDF SERVICE CLASS=DDFPRU RESOURCE GROUP=*NONE PERIOD=1 IMPORTANCE=2
 CRITICAL =NONE

 TRANSACTIONS TRANS.-TIME HHH.MM.SS.TTT --DASD I/O-- ---SERVICE---- --SERVICE RATES-- PAGE-IN RATES ----STORAGE----
 AVG 56.19 ACTUAL 4.522 SSCHRT 9.0 IOC 0 ABSRPTN 126 SINGLE 0.0 AVG 0.00
 MPL 56.19 EXECUTION 4.522 RESP 3.6 CPU 12763K TRX SERV 126 BLOCK 0.0 TOTAL 0.00
 ENDED 7229 QUEUED 0 CONN 0.5 MSO 0 TCB 126.6 SHARED 0.0 CENTRAL 0.00
 END/S 4.02 R/S AFFINITY 0 DISC 2.8 SRB 0 SRB 0.0 HSP 0.0 EXPAND 0.00
 £SWAPS 0 INELIGIBLE 0 Q+PEND 0.3 TOT 12763K RCT 0.0 HSP MISS 0.0
 EXCTD 0 CONVERSION 0 IOSQ 0.0 /SEC 7091 IIT 0.0 EXP SNGL 0.0 SHARED 0.00

Service class Assigned based on
WLM classification

rules

Same as owner Same as original
enclave

CPU time Owner’s SMF30CPT
(total)

owner’s SMF30ENC
(for independent only)

Owner’s SMF30CPT
(total)

owner’s SMF30DET
(for dependent only)

Owner’s SMF30MRI
(for foreign indep.)

owner’s SMF30MRD
(for foreign dep.)

CPU service by
address space

Owner’s SMF30CSU
(total)

owner’s SMF30ESU
(independent only)

owner’s SMF30CSU
(total)

CPU time /
SMF30MRA / 256 *

CPU coeff.
(coeff. obtained by

SMF72 record)

CPU service by period Enclave’s R723CCPU
or SMF72CTS

Enclave’s R723CCPU
or SMF72CTS

Enclave’s R723CCPU
or SMF72CTS

IOC service Server’s SMF30 and
SMF72 records

Server’s SMF30 and
SMF72 records

Server’s SMF30 and
SMF72 records

SRB service
(nonpreemptible)

N/A N/A N/A

MSO service N/A Owner’s SMF30MSO,
based on owner’s

frame count

N/A

Independent Dependent Foreign
Chapter 8. DB2 workload considerations 241

 AVG ENC 56.19 STD DEV 1.50.515 HST 0.0 EXP BLK 0.0
 REM ENC 0.00 APPL % 7.0 EXP SHR 0.0
 MS ENC 0.00

Enclave SDSF reporting
Example 8-3 is produced by the SDSF ENC command.

Example 8-3 SDSF enclave reporting (dependent enclave)

Display Filter View Print Options Help

 SDSF ENCLAVE DISPLAY SC69 ALL LINE 1-9 (9)
 COMMAND INPUT ===> SCROLL ===> CSR
 NP TOKEN SSType Status SrvClass OwnerAS Type Subsys Workload
 600012A7CB JES ACTIVE VEL95 38 DEP JES2 OTHER
 540012A7CC JES ACTIVE VEL95 40 DEP JES2 OTHER
 480012A7CD JES ACTIVE VEL95 107 DEP JES2 OTHER
 200012A7CE JES ACTIVE VEL95 98 DEP JES2 OTHER
 680012A7C6 JES ACTIVE VEL95 55 DEP JES2 OTHER
 380012A7C7 JES ACTIVE VEL95 100 DEP JES2 OTHER
 340012A7C8 JES ACTIVE VEL95 28 DEP JES2 OTHER
 280012A7C9 JES ACTIVE VEL95 39 DEP JES2 OTHER
 4C0012A7CA JES ACTIVE VEL95 109 DEP JES2 OTHER

The TYPE Field shows on which kind of enclave we are working. In our example, the type is
DEP.

The owning address space of the first enclave is 38.

8.4 DB2 Stored Procedures
In this section, we discuss the Stored Procedures DB2 facility and how it exploits WLM to
manage the performance of individual client requests. Stored procedures is a special feature
of DB2 and provides substantial improvements for distributed data access.

8.4.1 What are stored procedures

The distributed environment brought a series of problems to modern data processing. One of
these problems is the lack of central management for application installation and
maintenance. Thousands of application copies are spread all over servers and client
machines, making the task of keeping them consistent almost impossible.

Furthermore, these problems are not confined to a distributed database topology. For
example, DB2 clients ask for data from DB2 servers in order to perform some processing
against the data on the client workstation. To minimize such problems, the concept of DB2
Stored Procedures was introduced.

The DB2 Stored Procedures function consists of user-written structured query language
(SQL) programs stored at a DB2 local or remote server. They can be invoked by a client
application. This function enables a new kind of client/server application that has central
management of the applications, with reduced traffic between the client and the server.

Note: The z/OS implementation of stored procedures changed from DB2 V4 to DB2 V7
and to DB2 V8.
242 System Programmer’s Guide to: Workload Manager

Local client applications, remote Distributed Relational Database Architecture (DRDA)
applications, or remote data services (DB2 private protocol) can invoke stored procedures by
issuing the SQL CALL statement. Figure 8-3 and Figure 8-4 on page 244 show examples of
how to invoke DB2 Stored Procedures.

Stored procedures were introduced in DB2 for OS/390 Version 4.1. They are executed in a
new address space, the stored procedure address space (ssnmSPAS).

Figure 8-3 Example of DB2-established stored procedures

In DB2 V4.1, you had a single stored procedures address space with multiple TCBs, each
stored procedure running with its own TCB. You define the maximum concurrent TCBs in the
DB2 Stored Procedure Parameter Panel (DSNTIPX) of the DB2 installation CLIST
DSNTINST.

With DB2 V5 and the WLM enhancements in OS/390 Release 3, the stored procedures
environment has been enhanced. With the extended enclave support in OS/390 Release 3,
enclaves also support TCBs. Thus, WLM can assign dispatching priorities to stored
procedure transactions based on the service class goals.

DDF MSTR dsnxSPAS IRLM

Client Application

SQL Connect

SQL Call STPROC
STPROC

Results passed back to the client

DB2

Remote client
connects to DB2

Client appl invokes
PROCX

STPROC is loaded into the SPAS asid
from an MVS load library STPROC
Chapter 8. DB2 workload considerations 243

Figure 8-4 Example of WLM-established stored procedures

Now, you also have a choice between a single DB2-established address space or multiple
WLM-established address spaces. Multiple DB2 address spaces for stored procedures with
multiple tasks at each address space allow clients to run more concurrent transactions
compared to a single address space. The multiple address spaces also provide improved
program isolation for stored procedures.

Table 8-4 on page 245 summarizes differences between stored procedures that run in
WLM-established stored procedures address spaces and those that run in a DB2-established
stored procedures address space.

Important: Only those stored procedures that were created in a release of DB2 prior to
Version 8 can be run in a DB2-established address space. We do not recommend that you
support this type of address space.

SQL conn.

SQL
call STPRC

WLM A.S. DB2 DBM
 A.S.

DB2 DDF
 A.S.

dsnxxxxxx

sysIBM.sysr..
Application

Environment

SCA SCB
a.e='wlm_env1'
where
proc=STPRC

STPRC

sys1. proclib

Procedure to start dsnxxxxxx server
address space is loaded from the MVS
proclib data set
244 System Programmer’s Guide to: Workload Manager

Table 8-4 Difference between DB2 and WLM-established stored procedure address space

For further discussion of DB2-established and WLM-established stored procedure address
spaces, see DB2 UDB for z/OS V8 Administration Guide, SC18-7413.

8.4.2 WLM considerations for DB2 Stored Procedures
WLM is involved with DB2 Stored Procedures in three ways:

� It enforces goals to the DB2 Stored Procedures enclaves. These enclaves also support
TCBs.

� It controls the number of DB2 Stored Procedure address spaces automatically, based on
your service class goals through the following process:

– First request comes in:

• DDF creates an enclave to represent this request, assigning the service class
according to the classification rules.

• Now DBM1 recognizes that a STP request is included and inserts the request to the
corresponding Application Environment.

• WLM now creates a work queue for the Application Environment and the service
class and queues the request here.

• WLM starts the first server for this combination of Application Environment and
work queue unconditionally. This server address space is always started and it is
not based on any calculations for demand.

– More requests for the Application Environment arriving:

• If they all belong to the same service class, they are queued to the work queue that
has already been created. If not, WLM starts additional server address spaces
based on demand goal achievement and other considerations.

• If a request for a new service class (same Application Environment) is detected, a
new work queue is created and the first server address space will be started
unconditionally.

• The same is happening if a request for a different Application Environment arrives.

DB2-established WLM-established

Use a single address space for stored
procedures.

Use many address spaces for stored
procedures and user-defined functions.

Incoming requests for stored
procedures are handled in a first-in,
first-out order.

Requests are handled in priority order.

Stored procedures run at the priority of
the stored procedures address space.

Stored procedures inherit the z/OS
dispatching priority of the DB2 thread that
issues the CALL statement. User-defined
functions inherit the priority of the DB2
thread that invoked the procedure.

No ability to customize the environment. Each address space is associated with a
WLM Application Environment that you
specify. An Application Environment is an
attribute that you associate on the CREATE
statement for the function or procedure. The
environment determines which JCL
procedure is used to run a particular stored
procedure.
Chapter 8. DB2 workload considerations 245

– If the demand for a service class (Application Environment/work queue) drops:

• Excessive servers become unbound after about five minutes of inactivity, although
you might assist up to 15 minutes or more depending on the activity peaks and
other internal considerations.

• Unbound first means the server address space disappears from the work queue. It
is still available for the Application Environment for another five minutes in case
new activity comes in, but eventually WLM stops it.

• This process is repeated for all server address spaces except the last one, which is
bound to a service class work queue. This becomes unbound after one hour of
inactivity. After that, WLM forgets about the work queue, and if new requests come
in, the process starts all over again.

If your installation requires you to keep a server address space always open, the only
thing your installation can do is to send a dummy request once every hour that prevents
the last server address space from going away.

There is no mechanism provided for customer intervention in this WLM process. You can
either set no limit on the number of startable address spaces in the Application
Environment definition (which includes the JCL start procedure name), or set the limit to a
single address space for an Application Environment.

You can also manually control the number of stored procedure address spaces using the
MVS start command. You choose this mode by omitting the JCL procedure name in the
Application Environment for the stored procedures.

� It controls the distribution of the stored procedures across the server address spaces. You
can use WLM to dedicate address spaces to stored procedures of the highest business
priority to attempt to ensure that there is always an address space available. You can do
this by assigning work to different Application Environments. You can group related stored
procedures in the same address space to isolate them from others associated with
different business functions. You can also isolate stored procedures completely from each
other by configuring an address space to run only one procedure at time by using the DB2
parameter NUMTCB=1.

Considerations for enforcing WLM goals
When you access a stored procedure from a local client application, you do not need to
define a specific performance requirement. All such calls inherit the performance
requirements from the calling address space, because there is no independent enclave
associated with the execution of the stored procedure. The stored procedure call is a
continuation of the original transaction.

You only need to define specific performance requirements for the independent enclave
under the DDF subsystem type when you access the stored procedure remotely via the DDF
address space.

8.4.3 WLM definition for DB2 Stored Procedures
This section describes the WLM definition using DB2 Stored Procedures.

Using WLM-established address spaces
If you use WLM-established stored procedures address spaces, you must define a WLM
Application Environment. WLM uses these definitions for its server address space
management.

There are other tasks that must be completed before a stored procedure can run in a
WLM-established stored procedures address space. One of these tasks is to assign the
246 System Programmer’s Guide to: Workload Manager

stored procedures to an Application Environment. You do this by updating the WLM_ENV
column of the SYSIBM.SYSPROCEDURES table in your DB2 subsystem. You can use the
following statement, for example:

UPDATE SYSIBM.SYSPROCEDURES
SET APPLENV='WLMENV2'
WHERE PROCEDURE='BIGPROC'

For a description of the other DB2-related tasks you must complete before using stored
procedures in a WLM-established address space, see DB2 UDB for z/OS V8 Administration
Guide, SC18-7413.

To define the WLM Application Environment, you have to use the WLM administrative
application. The names of the defined environments have to match the names used in the
DB2 definition for the stored procedures.

Example 8-4 shows an example of how to define your WLM Application Environment.

Example 8-4 Application Environment definition for DB2 Stored Procedures

Application-Environment Notes Options Help
--
 Modify an Application Environment
Command ===> __

Application Environment Name . : WLMENV2
Description Large stored procedure Env.
Subsystem Type DB2
Procedure Name DBC1WLM2
Start Parameters DB2SSN=DBC1,NUMTCB=40,APPLENV=WLMENV2
 __

Limit on starting server address spaces for a subsystem instance:
1 1. No limit
 2. Single address space per system
 3. Single address space per sysplex

DB2 Stored Procedures have to run on the same image as the DB2 instance that started
them, since all stored procedure address spaces depend on the same subsystem instance
(DBC1, in this example). DB2 Stored Procedures do not support shipping transactions to
server address spaces on another system.

You have to select option 1 No Limit (the default) to allow multiple servers to be started for
stored procedures. If, for testing purposes, you want to limit the address spaces WLM can
start for an Application Environment, select option 2. Option 3 is not applicable for DB2
Stored Procedures.

You can define parameters that should be used to start the address spaces in the Start
Parameter line. For DB2, the NUMTCB parameter controls how many TCBs can start in this
address space. Because every stored procedure runs in its own TCB, this parameter controls
how many stored procedures can run concurrently.

You can separate your stored procedures into multiple Application Environments. But be
aware that unless a particular environment or service class is not used for a long time, WLM
creates on demand at least one address space for each unique combination of WLM
Application Environment and service class that is encountered in the workload. For example,
if there are five Application Environments that each have six possible service classes, and all
Chapter 8. DB2 workload considerations 247

those combinations are in demand, it is possible to have 30 stored procedure address
spaces.

WLM routes work to stored procedure address spaces based on the Application Environment
name and service class associated with the stored procedure. The service class is assigned
using the WLM classification rules. Stored procedures inherit the service class of the caller.
There is no separate set of classification rules for stored procedures. For more information
about classification rules, see “Define your classification rules” on page 250. For information
about the address space manager function of WLM, see 1.2.6, “Application Environment” on
page 13.

Figure 8-5 shows how DB2 Stored Procedures use the server address space management
function of WLM.

Figure 8-5 DB2 Stored Procedures and WLM

The steps are:

1. Before starting to process a transaction, DB2 needs to CONNECT to WLM. WLM then
prepares the control blocks that anchor the Application Environments.

2. When a stored procedure call (SQL CALL) arrives, DB2 might create an enclave for the
called stored procedure or use an existing one, depending upon the origin of the
transaction:

– If the origin is DDF, an independent enclave already exists, so DB2 uses this enclave
for the stored procedure call.

– If the origin is TSO, JES, or APPC, a dependent enclave is created that inherits the
attributes of the originating address space and is considered a continuation of the
originating transaction.

Important: To prevent creating unnecessary address spaces, create only a relatively small
number of WLM Application Environments and service classes.

WLM work
Queue

DB2 Subsystem

Process "CALL"

Enclave

SQL work

Enclaves
Address Space Management

Application XYZ

DB2 Stored Procedures

Application ABC

DB2 Stored Procedures
248 System Programmer’s Guide to: Workload Manager

– If the origin is CICS or IMS, a dependent enclave is created and the stored procedure
call inherits the performance goal of the caller address space.

3. At this point, the enclave has an associated service class. There is also a check for the
Application Environment associated with the transaction.

4. DB2 queues the request with an IWMQINS service call to a WLM-managed queue. WLM
queues the request to the appropriate Application Environment queue. There is a queue
for each unique combination of an Application Environment and service class.

5. If no address space serves this queue, a server address space has to be started. The
server address space is started by the procedure defined in the Application Environment
related to the called stored procedure. The main program is the shell program
(DSNX9WLM). The shell connects to WLM using the IWMCONN service. Authorization is
checked at this point.

6. A ready server address space serving the transaction environment issues an IWMSSEL
service to select the request from the transaction environment queue.

7. Before passing control to the stored procedure, the shell invokes the begin execution
processing by using the IWMSTBGN service of WLM. The TCB of the caller joins the
enclave of the associated stored procedure. Resource consumption starts to be charged
to the transaction or enclave at this point. If this is a dependent enclave, the resources are
eventually charged to the originating address space.

8. The procedure ends and returns control to the shell, which invokes the end execution
processing using the IWMSTEND service of WLM, and resource consumption ends. The
result of the stored procedure is sent back to the originating client.

Figure 8-6 describes an example of a stored procedure called by a TSO user. In this case, a
dependent enclave is created.

Figure 8-6 Stored procedure called by TSO user

Application XYZ

Application ABC

DB2
address
space

Application XYZ
WLM
Work

Queue

Dependent
Enclave

process
CALL

SQL
CALL
 proc

Appl. Env

Appl. Env

TSO
User
Chapter 8. DB2 workload considerations 249

Define your classification rules
You can define your own performance goals for a stored procedure only if you access the
stored procedure remotely, because DDF creates an independent enclave for the incoming
requests. All local calls inherit the performance attribute of the calling address space and are
continuations of existing address space transactions (dependent enclave).

You have to define classification rules for the incoming DDF work.

You have to define classification rules for SUBSYS=DDF using the possible work qualifiers
(there are 11 applicable to DDF) to classify the DDF requests and assign them a service
class.

Other classification attributes are, for instance: account ID, user ID, and subsystem identifier
of the DB2 subsystem instance, or LU name of the client application. For a description of all
DB2 DDF work qualifiers and DDF threads classification, see DB2 UDB for z/OS V8
Administration Guide, SC18-7413.

Example 8-5 shows an example of the classification of DDF threads.

Example 8-5 Classification rules for stored procedures invoked from remote clients

. Subsystem-Type Xref Notes Options Help
 --
 Modify Rules for the Subsystem Type Row 1 to 6 of 6
 Command ===> __ SCROLL ===> PAGE

 Subsystem Type . : DDF Fold qualifier names? Y (Y or N)
 Description . . . Distributed DB2

 Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 -------Qualifier------------- -------Class--------
 Action Type Name Start Service Report
 DEFAULTS: DB2BATCH RDB2
 ____ 1 SI DBC1 ___ DDFPROD ________
 ____ 2 UI SYSADM ___ DDFHIGH ________
 ____ 2 PRC PAYPROC ___ PAYROLL ________
 ____ 2 LU DDFL%%% ___ DDFMED ________
 ____ 1 SI DBCT ___ DDFTEST ________
 ____ 2 PRC_ PAYPROC ___ PAYROLLT ________

The first level subsystem instance (SI) qualifier specifies the DB2 subsystem the DDF work is
for. The default service class in the DB2 subsystem DBC1 is DDFPROD. The SYSADM user
gets a service class of DDFHIGH, and the client request coming from logical units (LU)
starting with DDFL gets a service class of DDFMED. The stored procedure PAYPROC gets
the service class PAYROLL in the production system DBC1, and it gets the service class
PAYROLLT in the test system DBCT. All other users in the production system DBCT have the
service class DDFTEST.

Important: If you do not define any classification rules for DDF requests, all enclaves get
the default service class SYSOTHER. This is a default service class for low priority work,
and it might not be what you want.

Important: You can classify DDF threads by, among other things, stored procedure name.
But the stored procedure name is only used as a work qualifier if the first statement issued
by the client after the CONNECT is an SQL CALL statement.
250 System Programmer’s Guide to: Workload Manager

Defining your service classes

You have to define your service goals using the WLM administration application. You can
define response time, velocity, and discretionary goals for stored procedures or other DDF
threads in line with your business requirements.

Use execution velocity percent if you have fewer than ten ending transactions over a
twenty-minute period. Use response time if there are sufficient completions, mainly for the
first and second periods. The response time goal can be determined from an SLA or from
RMF reports. Stored procedures enclaves do not present queue time, so the response time is
equal to the service time. Use a discretionary goal for the third period.

Use period aging to protect the system against long-running (high-consuming) stored
procedures and to let short-running transactions get in and out at a higher priority. Define a
duration (DUR) that forces about 80% of the queries to finish in the first period (80/20 rule:
80% of the transactions use 20% of the resources). The first period is started when the
enclave begins.

Performance goals for the server address spaces
The MVS performance objective of the DDF address space or the WLM-established stored
procedures address spaces does not govern the performance objective of the user thread.
Assign the DDF address space and WLM-established stored procedures address spaces to
an MVS performance objective that is similar to the DB2 database services address space
(ssnmDBM1).

The MVS performance objective of the DDF and stored procedures address spaces
determine how quickly DB2 is able to perform operations associated with managing the
distributed DB2 workload, such as adding new users or removing users who have terminated
their connections.

8.5 DB2 sysplex query parallelism
In this section, we describe how sysplex query parallelism exploits the function of WLM.

8.5.1 Query parallelism
Query parallelism is a way of reducing the elapsed time for long-running queries that can
either be I/O intensive or CP intensive. An I/O-intensive query scans large volumes of data
and requires considerable I/O processing and minimal CPU processing. A CP-intensive query
usually performs sorts and can have query functions such as joins on multiple tables, column
and scalar functions, and grouping and ordering of data.

DB2 V5 has introduced sysplex query parallelism, which extends parallel processing to allow
a single query to use all of the processing power of a data sharing group in a DB2 data
sharing environment. Sysplex query parallelism now makes the Parallel Sysplex attractive as
a complex query environment as well.

Important: Remember that WLM starts an address space for every unique combination of
Application Environment and service class, so do not create too many service classes.
Chapter 8. DB2 workload considerations 251

8.5.2 How sysplex query parallelism works
DB2 data sharing in a Parallel Sysplex configuration is a requirement for sysplex query
parallelism.

If a query qualifies for parallel processing, DB2 determines the optimal degree of parallelism
at bind or prepare time. DB2 can decide to distribute parts of the query for processing to other
members in the data sharing group, or to process the query within the originating subsystem
only. The distribution of query parts to another DB2 subsystem is done using XCF services.

Different DB2 members process different ranges of the data, and the results are returned to
the application issuing the initial SQL request statement.

The original query must execute on a member of a data sharing group that has the
COORDINATOR parameter set to YES in the DB2 installation dialog.

The COORDINATOR subsystem parameter controls whether this DB2 can send parallel
tasks out to other DB2s in the data sharing group. If the COORDINATOR parameter is not
YES at runtime, the query runs within a single DB2.

To be considered as candidates for assisting the parallelism coordinator, the other members
must have YES specified in the ASSISTANT field of DB2 installation dialog. The ASSISTANT
subsystem parameter controls whether this DB2 can receive parallel tasks from another DB2
in the data sharing group. If this DB2 is the coordinator for a particular query, then its
ASSISTANT parameter is irrelevant.

A parallel query must start on a coordinator DB2 subsystem and can be spread over many
assistant DB2 subsystems, or run only in the originated subsystem, depending on DB2
decisions and definitions. A DB2 subsystem can be the coordinator for one query and the
assistant for an other query.

For optimal use of processor resources, run only one DB2 data sharing member at a time on
a given CPC.

Figure 8-7 on page 253 shows all members of a data sharing group participating in
processing a single query.
252 System Programmer’s Guide to: Workload Manager

Figure 8-7 Parallel query processing

Different DB2 members are processing different partitions of the data.

This is a simplification of the concept; in reality, several DB2s can access the same physical
partition. To take full advantage of parallelism, use partitioned table spaces.

For more information about sysplex query parallelism and how to implement it, see DB2 UDB
for z/OS V8 Data Sharing: Planning and Administration, SC18-7417.

8.5.3 WLM considerations for sysplex query parallelism
It is important to define how you want MVS to handle the work for sysplex query parallelism.

You need to define group-wide goals for workload management for both work that originates
on a particular DB2 and for work that is processed by that DB2 on behalf of another.

The task of classifying work that runs on the parallelism coordinator is the same as without
parallelism. However, you must also classify work that runs on the assistant DB2. If you do
not do this, the part of the query that runs on the assistant is, by default, discretionary work.
Because the enclave created by the assistant DB2 has no associated service class, it gets
the SYSOTHER service class. This has an assigned discretionary goal. Discretionary work
runs at the priority usually reserved for very low-priority batch work.

DB2 in conjunction with WLM can assign query requests on a very granular level using the
WLM classification rules. You can assign priority to your query at a user level, plan level, or
package level.

You can define response time, velocity, or discretionary goals. You can define period aging to
facilitate the flow of short-running and long-running work in the system. Consider also the use
of Resource Groups in order to limit the amount of resources that a “runaway” or “hog” query
might consume.

1 2 3 4 5 6 7 8 9 10

Account Table
Partition number

Data Sharing Group

CPC1 CPC2 CPC3 CPC4

DB2 DB2 DB2 DB2

SELECT * FROM ACCOUNT
Chapter 8. DB2 workload considerations 253

The performance philosophy behind the use of period aging is to give resources up-front to
new work coming into the system in order to get the work completed. Longer-running queries
fall through multiple service class periods and get fewer resources the longer they run. This
automatically controls the priority of short-running and long-running work in the system,
without the need for identifying the two categories of work. A good design goal for query
workload is to keep short-running queries short and prevent longer-running queries from
monopolizing system resources.

Your query workload (decision support, business intelligence, and so on) can run
concurrently with your other online workload without affecting the performance of your other
business-critical workloads.

8.5.4 WLM definition for sysplex query parallelism
As mentioned, the task of classifying the queries running on the parallelism coordinator DB2
subsystem is the same as without parallelism. The queries are associated with a service
class according to the subsystem type of the originator of the query (TSO, CICS, JES, or
DDF).

In addition to defining a service class for the coordinator, you must also define and assign a
service class for the assistant enclave. If this enclave does not have a service class of its
own, it gets the default service class SYSOTHER. This service class has a discretionary goal,
that is, a goal reserved for very low-priority work.

General recommendations for the implementation are:

� Create classification rules and service class for the coordinator query.

The pieces of the query that run in the coordinator DB2 are classified under the subsystem
type of the originator of the query (for example, CICS, TSO, JES, or DDF). Refer to the
specific subsystem type for guidance about how to classify such a workload.

� Create classification rules for the assistant enclave query.

You have to define classification rules under the DB2 subsystem type, using any of the
possible work qualifiers, to point to a service class. The qualifiers that are valid for a
particular workload depend on where it originates. For example, if the query workload
originates from TSO users, then the TSO qualifiers can be used for the assistant enclave.
Ask for assistance from your DB2 database administrator to select the most appropriate
work qualifiers.

� Create service classes for the assistant enclave query.

Define one or more service classes representing the goal for your split-up enclave
queries. We suggest that you use the same service classes that the coordinator uses, but
if you want, you can define different service classes for the assistant.

Classification rules
You categorize your workload into service classes using a classification rule. The
categorization is based on work qualifiers that identify a work request to the system. The first
qualifier is the subsystem that receives the work request. This is very important to know when
defining the classification rules for query parallelism.

The piece of a split-up query that runs locally, that is, the piece that runs on the coordinator, is
classified according to the subsystem type of the originator of the query (for example, TSO,
JES, or DDF). Only the queries that DB2 has created by splitting a single, larger query and
distributing them to the assistant DB2s are classified under the DB2 subsystem type.
254 System Programmer’s Guide to: Workload Manager

Because of this, you have to define classification rules for the coordinator and for the
assistants. These rules can be different and can also use different goals.

Example 8-6 and Example 8-7 show examples of how to define your WLM classification
definitions for your sysplex query parallelism workload. One definition is for the coordinator
where the query originates locally from TSO, and the other definition is for the assistants
where the distributed parts of the query run within the data sharing group.

Example 8-6 WLM classification rules for coordinator

Subsystem-Type Xref Notes Options Help
 --
 Modify Rules for the Subsystem Type Row 1 to 3 of 3
 Command ===> __ SCROLL ===> PAGE

 Subsystem Type . : TSO Fold qualifier names? Y (Y or N)
 Description . . . Decision Support- Coordinator

 Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 -------Qualifier------------- -------Class--------
 Action Type Name Start Service Report

DEFAULTS: DSLOW RDSDEF
 ____ 1 UI CEO%% ___ DSHIGH RDSHIGH
 ____ 1 UI USER%% ___ DSMED RDSMED
 ____ 2 AI__ D10* ___ DSLOW RDSLOW__

Example 8-6 shows the classification for the coordinator queries that originate from TSO.
WLM associates work from user IDs that start with CEO to service class DSHIGH, and work
from user IDs starting with USER to service class DSMED. If a user ID USERxx has an
account ID starting with D10, then this work is associated with service class DSLOW.
Requests that arrive from user IDs that do not match one of these rules are assigned to the
default service class DSLOW.

Example 8-7 WLM classification rules for the assistant DB2 subsystems

Subsystem-Type Xref Notes Options Help
 --
 Modify Rules for the Subsystem Type Row 1 to 4 of 4
 Command ===> __ SCROLL ===> PAGE

 Subsystem Type . : DB2 Fold qualifier names? Y (Y or N)
 Description . . . Sysplex Query Assistants

 Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 -------Qualifier------------- -------Class--------
 Action Type Name Start Service Report
 DEFAULTS: DSLOW ________
 ____ 1 SI TSO ___ DSDISC ________
 ____ 2 UI CEO%% ___ DSHIGH ________
 ____ 2 UI USER%% ___ DSMED ________
 ____ 3 AI D10* ___ DSLOW ________

The DB2 in the subsystem type is for all DB2s in the Parallel Sysplex where a split query can
run under an assistant DB2. The subsystem instance (SI) level 1 classification rule classifies
query work originating from other members of the data sharing group. In Example 8-7, the
Chapter 8. DB2 workload considerations 255

queries originated from TSO and were distributed to an assistant DB2. For the DB2
subsystem type, the qualifier SI corresponds to the transaction subsystem type on the
coordinator DB2, in this case, TSO.

Because you define classification rules for different subsystems on the coordinator and the
assistants, you also have a different set of work qualifiers. For a description of qualifiers
supported by subsystems, see z/OS V1R8.0 MVS Planning Workload Management,
SA22-7602.

Types of goals
Defining your workload goals depends on your business requirements and your workload
characteristics. Therefore, while we cannot provide you with a definitive answer about how to
define your goals, we give you useful advice regarding the goal for sysplex query parallelism.

You can define any of the three types of goals for your sysplex query parallelism work:
Response time goals, execution velocity goals, or discretionary goals. You can also use
performance aging in the form of service class periods.

The type and the numeric value for goals in the coordinator and assistants should be the
same.

With regard to the type of goals, it is “business as usual”: Use execution velocity if you have
fewer than ten ending transactions over a twenty-minute period. Use response time if there
are sufficient completions to build up a good history for WLM to work with. The response time
numeric value can be originated from an SLA or from RMF reports. For parallel query
transactions, there is no queue time, so the response time is equal to the service time. Use a
discretionary goal for the last period.

Use periods to protect the system against high-consuming, long-running queries. Use a
duration (DUR) that forces about 80% of the queries to finish in the first period (80/20 rule:
80% of the transactions are using 20% of the resources).

With regard to period switching, be aware that with sysplex query parallelism, the query work
for a particular query always starts out in the first period on each assistant with no
accumulated service units. Use the RMF reports and DB2 performance monitor reports to
examine the typical degree of parallelism and adjust the durations that you specify so that
period switch occurs after the desired number of service units has been consumed.

Use a discretionary goal if all of your other workload is more important than your queries.

Important: Be aware that the response time for a query can vary widely depending on
the degree of parallelism that determines the number of query parts. This might not
always be predictable.
256 System Programmer’s Guide to: Workload Manager

Chapter 9. WebSphere Application Server
workload considerations

This chapter provides a description of the WebSphere environment, a summary of the
different elements that belong to this environment, and how you can classify them from a
Workload Manager (WLM) perspective.

9

© Copyright IBM Corp. 2005, 2006, 2007. All rights reserved. 257

9.1 General considerations
Workload management on z/OS provides the following benefits to WebSphere Application
Server applications. WLM:

� Balances server workloads, allowing processing tasks to be distributed according to the
capacities of the different system images in the sysplex.

� Provides failover capability by redirecting client requests if one or more servers are unable
to process them. This improves the availability of applications and administrative services.

� Enables systems to be scaled up to serve a higher client load than provided by a single
system image configuration. With clustering, additional instances of servers can easily be
added to the configuration.

� Enables servers to be transparently maintained and upgraded while applications remain
available for users.

� Centralizes the administration of servers and other objects.

WebSphere for z/OS can use, along with WLM queuing manager services, WLM routing
services and WLM sysplex routing services.

Workload management in z/OS is based on the concept of grouping work into service
classes. The incoming work request is classified to a service class and the WLM schedules
the resources to complete the work request according to this service class. Figure 9-1 shows
how WebSphere work requests are classified into service classes.

Figure 9-1 Classification of work requests

Figure 9-1 includes these components:

� Work qualifier: WebSphere for z/OS associates each work request with a work qualifier
that identifies a work request to the system.

The WebSphere application workload runs in subsystem CB.

The supported work qualifiers for subsystem CB are:

CN Collection name, the server_generic_short_name for the WebSphere for z/OS
Application server.

SI Server instance name; this is the server_specific_short_name.

Note: A CB subsystem is an IBM-supplied workload model for Component Broker-like
workloads. It represents a set of CB objects that are grouped together and run in a
logical server. It is used to manage transactions as WLM enclaves.

Work Qualifiers

Subsystem Type... CB
Server Name........ SDSR03

TranClassMap HIGH

Classification Rules

Subsystem Type=CB

Tran Name = SDSR03
 Tran Class =HI, Service=FAST

Service Class=FAST

Enclave
258 System Programmer’s Guide to: Workload Manager

TC Transaction class assigned to the transaction using the transaction class mapping
file for the server. This facility allows us to differentiate performance objectives
between multiple transactions running on the same WebSphere server.

UI User name; the user name under which the work request is run.

� Classification rules: Classification rules associate a work request, as defined by its work
identifier, to a WLM service class.

� Service class: The z/OS WLM organizes work into workloads and service classes. The
service class for a group of work defines the performance goal and business importance:

– Performance goals

There are three kinds of goals: Response time, execution velocity, and discretionary.
The response time goal indicates the response time for individual transactions, the
execution velocity goals are suitable for started tasks or batch jobs, and the
discretionary goals are for low priority work.

A response time objective is usually consistent with the business requirement of a
WebSphere application. Also, the response time option automatically generates
response time distribution information to be reported through an RMF report. You might
find this option useful when having to investigate response time issues.

– Business importance of the work

The business importance for a service class defines how important it is to achieve the
performance goal for that service class. At runtime, the workload management
component manages workload distribution and allocation of resources to competing
workloads. High priority workloads get guaranteed consistent results, for example,
response time, throughput, and so forth.

9.2 WebSphere on z/OS and WLM
WebSphere Application Server for z/OS V5 exploits WLM services to process incoming
requests:

� Queuing services to manage the execution priority of address spaces and work requests.

� Enclave to manage performance of WebSphere transactions across multiple address
spaces.

� Application Environments to dynamically manage the number of servant address spaces.

9.2.1 Queuing services
Queuing manager services manage execution of address spaces and the work requests they
process to meet service class performance goals.

The classification of each transaction is managed by the controller region. The controller
region acts as a queuing manager that queues work requests to workload management for
execution in servant address spaces. Workload management maintains the queues for
passing work requests from the controller region to each servant region.

The controller region listens for work requests and puts them on the Workload Management
queue. The Workload Management component of z/OS dispatches the work to the servant
region according to the WLM policy specified by the work identifier.

Figure 9-2 on page 260 illustrates the flow from the WebSphere controller region to the
servant regions.
Chapter 9. WebSphere Application Server workload considerations 259

Figure 9-2 Interaction among WLM, controller, and servant regions

WLM temporal affinity
Temporal affinity is an extension to the WLM queue server manager interfaces that allow
middleware to direct work requests to a specific server region (it is similar to CICS transaction
affinity).

Temporal affinity enables WebSphere to create objects that live across multiple transactions
that must be accessed by tasks that process transactions for the same client that are not
persistent (therefore, temporal).

Existing WLM interfaces allow a WebSphere control region to queue work requests to a pool
of server regions for a service class. The assumption is that a transaction starts with inserting
the work requests and ends with leaving (potentially deleting) the enclave. There are cases
where information must be preserved across multiple independent work requests. The
information left behind lives only in the virtual storage of the address space. Follow-on work
requests requiring this information must be directed to the server region that has this
information.

The solution is that now the server region is able to obtain a region token at a select time
(IWMSSEL). A new interface (IWMTAFF) allows the server or control region to mark the
server region as needed by follow-on work requests. An extension of the insert mechanism
allows the control region to direct a work request to a specific server region. WLM ensures
that the server region stays alive until all temporal affinities have been removed.

SDSF displays information on the display active panel for queue server regions. See
Example 9-1.

Example 9-1 SDSF display of temporal information

JOBNAME U% Workload SrvClass SP ResGroup Server Quiesce
ASAHIP 4 STCDEF STC 1 TEMP-AFF NO

If middleware, such as WebSphere, uses temporal affinity, then it is no longer possible to
terminate a server region when such a temporal affinity exists. The server region uses a new
interface IWMTAFF to tell WLM that it has an affinity to the client. It is also the responsibility of
the server region to tell WLM that the affinity no longer exists.

Servant Region

Servant Region

Servant Region
Controller

Workload management
queues

WebSphere Server

Work request

--- Enclave ---
Service class

FAST

--- Enclave ---
Service class

SLOW

--- Enclave ---
Service class

DEFAULT

Daemon
260 System Programmer’s Guide to: Workload Manager

9.2.2 Enclaves
Enclave services allow performance management of a transaction across multiple address
spaces and systems inside a sysplex.

WebSphere Application Server for z/OS uses an independent enclave type that reports on
resource consumption based on a performance goal associated to the transaction, unrelated
to the performance goals of the address spaces in which the enclave dispatchable units
execute.

The controller region creates the enclave and associates the transaction to this classified
enclave. Then the transaction is queued, waiting to be served by an available thread in a
servant region.

9.2.3 Application Environments
Application Environments allow WLM to start new servant address spaces in order to meet
transaction performance goals. WLM starts a new servant region address space or stops a
servant region address space as the workload varies.

WLM might start additional server regions to meet performance goals, based on the
prioritization of its work compared to other work in the system, the availability of system
resources needed to satisfy those objectives, and a determination by WLM whether starting
more address spaces will help achieve the objectives.

By default, WebSphere servers are configured to only allow a single servant region. To enable
multiple regions and specify the maximum and minimum number of servant regions, use the
Administration Console, as shown on Figure 9-3.

From the initial panel, go to Servers Application Servers [server_name], then from
the Additional Properties section, select Server Instance.

Figure 9-3 Administration console: Minimum and maximum number of instances
Chapter 9. WebSphere Application Server workload considerations 261

Check the option Multiple Instances Enabled and specify the minimum number and
maximum number of instances to set boundaries on how many servant regions WLM starts:

� Use Minimum number of Instances to start up a basic number of servant regions before
the day's work arrives. This can save time waiting for WLM to determine that it needs more
servant regions.

� Maximum number of instances is useful to cap the number of servant address spaces
started by WLM if you determine that excessive servant regions can lead to service
degradation.

The minimum and maximum number of instances specified also has an influence on the
dispatching of transactions managed by WLM.

Transactions received by the WebSphere controller region are passed to servant regions
through a set of WLM queues. The number of queues is determined by the number of service
classes defined, and one servant region only serves one service class at a given time.

To ensure that you do not limit the parallelism of execution under full load, set the maximum
number of instances at least as large as the number of defined service classes.

If you specify a maximum number of instances too low, there can be fewer servants available
than WLM queues, and the result is a queue bottleneck under full load conditions. As a
consequence, the system might experience queuing delays that result in transactions getting
elongated response time.

Workload profile
Another performance factor to consider in order to determine the optimum number of servant
regions is the number of threads available to each servant region, as defined in the workload
profile.

The workload profile controls workload-pertinent decisions made by the WebSphere for z/OS
runtime, such as the number of threads used in the server region. The default workload
profile value is IOBOUND.

You can change the workload profile value through the administration console; go to
Application Servers [server_name] ORB Service Advanced Settings, as shown
on Figure 9-4 on page 263.
262 System Programmer’s Guide to: Workload Manager

Figure 9-4 Administration console: Workload profile

You can specify the server workload profile as ISOLATE, IOBOUND, CPUBOUND, or
LONGWAIT:

� ISOLATE: Specifies that the servant region is restricted to one single application thread.

� IOBOUND: Specifies more threads for applications that perform I/O-intensive processing.
We recommend IOBOUND for most applications that have a balance of CPU activity and
remote operation calls. The calculation of the thread number is based on the number of
CPUs, using the formula MIN(30, MAX(5,(Number of CPUs*3))).

� CPUBOUND: Specifies that the application performs processor-intensive operations and,
therefore, does not benefit from more threads than the number of CPUs. The calculation of
the thread number is based on the number of CPUs, using the formula MAX((Number of
CPUs-1),3).

� LONGWAIT: Specifies more threads than IOBOUND and is intended for applications that
spend most of their time waiting for network or remote operations to complete.
LONGWAIT allocates 40 threads.

9.3 Classifications rules
Figure 9-5 on page 264 shows the interaction between the WebSphere runtime and the WLM
process. Later, you can learn how you can classify these WebSphere elements to WLM.
Chapter 9. WebSphere Application Server workload considerations 263

Figure 9-5 WebSphere runtime and Workload Manager

9.3.1 Classification rules for STC subsystem
You create the rules for STC subsystems using the WLM ISPF application, as shown in
Figure 9-6.

Figure 9-6 WLM definition of WebSphere server regions, STC subsystem

To create the rules:

� Assign the controller region (Daemon, Node Agent, Deployment Manager) to a STC
service class with a high importance and a high velocity goal. There is a certain amount of
processing in the WebSphere application’s control regions to receive work into the system,

 TransClassMap wtsc48.itso.ibm.com:* /bpe/webclient* HI
 TransClassMap wtsc52.itso.ibm.com:* /bpe/webclient* HI
 TransClassMap wtsc52.itso.ibm.com:* * DFLT
 TransClassMap wtsc48.itso.ibm.com:* * DFLT
 TransClassMap *:* *

W W L M M
W W L MM MM
W W W L M M M
WW WW L M M
W W LLLL M M

WLM
policies

Controller
Region

WebSphere Server

WLM queues

DEFLT

WASLO

WASHI Servant
Region

 Minimum Number of Instances
 Maximum Number of Instances

 Transaction Class mapping file

enclave

WebSphere
Admin console

Servant
Region
enclave

Servant
Region
enclave

HFS

ISPF WLM
Application

 Modify Rules for the Subsystem Type Row 1 to 16 of 66
 Command ===> __ SCROLL ===> PAGE

 Subsystem Type . : STC Fold qualifier names? Y (Y or N)
 Description . . . ________________________________

 Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 --------Qualifier-------- -------Class--------
 Action Type Name Start Service Report
 DEFAULTS: SYSSTC OTHER
 ____ 1 TN SDSR03%S ___ VEL40 WASS
 ____ 1 TN SDSR03% ___ VEL75 WAS
____ 1 TN WS%%%%S ___ VEL40 WASS

 ____ 1 TN WS%%%% ___ VEL75 WAS
264 System Programmer’s Guide to: Workload Manager

manage the HTTP transport handler, and classify and route the input work. Because
controller regions act as work routers, they must have high priority.

� Assign the servant and adjunct regions to an STC service class with a high enough
velocity goal so that they can be initialized quickly when WLM determines that they are
needed (although of a lower value than the controller region). You use this service class
for tasks that run in the servant region under control of the step task and not as part of the
enclave. The service class should be lower in the service class hierarchy than more
important work, such as the controller region, production WebSphere enclaves, or CICS
and IMS transaction servers.

All threads are managed according to the CB-assigned service class, including those
outside of the enclave. However, any CPU time measured in the servant region that is not
part of the enclaves is charged to the STC-assigned service class (or reporting class) in
the RMF Workload Activity report.

� Classify correctly the BPXBATCH shell scripts that represent the first two steps of the
control region startup procedure to avoid elongating the startup time before BBOCTL gets
control. To mitigate this fact, classify the BPXBATCH steps under the OMVS subsystem
using the started task jobname for the TN field and assign a service class with high
importance and high velocity. Figure 9-7 shows an example of the OMVS classification
rules.

Figure 9-7 WLM OMVS classification rules for the WebSphere BPXBATCH steps

For further information, refer to:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD102730

You might also wish to define report classes for the address spaces’ STC activity. This allows
you to monitor the activity within the WebSphere regions for service tasks running outside of
the enclave.

9.3.2 Classification rules for CB subsystem
WebSphere applications that run in the servant region as part of the dispatched enclave use
these WLM classification rules. Each WebSphere transaction is dispatched as a WLM
enclave and is managed within the servant region according to the service class assigned
through the CB service classification rules. See Figure 9-8.

 Subsystem Type . : OMVS Fold qualifier names? Y (Y or N)
 Description . . . Unix System Services requests

 Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 --------Qualifier-------- -------Class--------
 Action Type Name Start Service Report
 DEFAULTS: UNIX ________
____ 1 TN WS* ___ VEL75 RFTP

 ____ 1 TN INET* ___ OPSHI ________
Chapter 9. WebSphere Application Server workload considerations 265

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD102730
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD102730

Figure 9-8 WLM definitions of the servant regions, CB subsystem

The CB classification rules can be based on server name, server instance name (although
not useful because instances share work), user ID (although not useful unless
RUNAS=USER), or transaction class. You can assign a default transaction class to the
servant, or you can use the virtual host name, port number, or URI template to map specific
requests to a transaction class using a transaction mapping file.

We recommend that you use a percentage response time goal for these transactions; for
example, 80% of transactions in less than 0.5 seconds, or you can have a high velocity default
service class. Response time goals are better than velocity goals in a production
environment. Velocity goals require recalibration every time that the environment changes
(CPU or workload). The default service class is SYSOTHER with a discretionary goal.

Avoid using multi-period goals, because the second and subsequent periods are not
aggressively managed.

Adjunct region
The adjunct region starts by the control region scheduling a dummy piece of work into the
application environment for the CRA (separate from the WLM application environment for the
regular servant regions). This will cause WLM to start up the CRA address space. As it starts
up, it will be prioritized based on its classification as a started task.

After it gets initialized and picks up the dummy request from the WLM queue, it will be bound
to the service class of the enclave associated with that request and the CRA will be managed
according to the goals of that service class.

The dummy request is an internal piece of work that goes through the IIOP path for
processing. In V6.0 it will be classified using the cluster name (as a collection name for WLM)
and a transaction class (if it found one in the classification XML file using the IIOP rules).
Starting with V6.1, you can use the InboundClassification type="internal" clause to specify a
default classification for all internal work that originates from the CR headed for any SR

 Modify Rules for the Subsystem Type Row 1 to 15 of 16
Command ===> __ SCROLL ===> PAGE

Subsystem Type . : CB Fold qualifier names? Y (Y or N)
Description . . . WebSphere App Server

Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 --------Qualifier-------- -------Class--------
Action Type Name Start Service Report
 DEFAULTS: WASDF OTHER
 ____ 1 CN ETDMGR* ___ WASDM WASE
 ____ 1 CN SDSR03* ___ WASLO WASE
 ____ 2 TC LO ___ WASLO WASE
 ____ 2 TC MED ___ WASDF WASE
 ____ 2 TC HI ___ WASHI WASE
 ____ 2 TC DFLT ___ WASDF WASE
 ____ 1 CN ETSR0* ___ WASHI WASE
 ____ 2 TC SGETA001 ___ WASDF SGETA001
 ____ 2 TC SGETA002 ___ WASDF SGETA002
 ____ 2 TC SGETA003 ___ WASDF SGETA003
 ____ 1 CN ET* ___ WASDF WASE
266 System Programmer’s Guide to: Workload Manager

(including the CRA). If the internal clause is missing, no transaction class is used for
classification.

Assigning transaction classes
WebSphere Application Server V5.1 (at service level W510200) can assign a transaction
class (TC) to a work item by using a transaction class mapping file for HTTP requests, or a
workload classification document for HTTP, IIOP, or MDB inbound requests.

Using a transaction class mapping file
When you use a transaction mapping file, you must define it to the server through the
administration console. See Figure 9-9.

From the initial panel, select Servers Application Servers [server_name] Web
Container Advanced Settings.

Figure 9-9 Admin console: Transaction class mapping

A transaction class mapping file allows us to associate a set of URIs to a specific transaction
class. At execution time, WLM uses the transaction class to associate the work request to a
service class. Example 9-2 shows a transaction class mapping file used for our tests.

Example 9-2 Transaction class mapping file

TransClassMap wtsc49.itso.ibm.com:* * LO
TransClassMap wtsc49.itso.ibm.com:* * LO
TransClassMap wtsc66.itso.ibm.com:* * LO
TransClassMap wtsc66.itso.ibm.com:* /bpe/webclient* MED
TransClassMap wtsc48.itso.ibm.com:* /bpe/webclient* HI

Using workload classification documents
WebSphere for z/OS Version 5.1 introduces a common .xml file for the classification of
inbound HTTP, IIOP, and MDB work, which we call the WebSphere for z/OS Workload
Classification Document. The Workload Classification Document location is specified to the
server through a WebSphere variable named wlm_classification_file. This variable can be set
at the Cell, Node, or Server Instance level, but must be accessible and applicable to all the
servers that inherit the specification from the Cell or Node level.
Chapter 9. WebSphere Application Server workload considerations 267

Consideration for using the Workload Classification Document:

� If the Workload Classification Document is not a well-formed, valid .xml document, then it
is ignored by the server. In the case of an error, the following message appears in the job
log with “{0}” replaced by the parser’s error message:

BBOJ0085E PROBLEMS ENCOUNTERED PARSING WLM CLASSIFICATION XML FILE {0}

� WebSphere Application Server Controller Region only reads the Workload Classification
Document during startup. You must restart the Application Server to implement any
changes to the contents of the file.

Example 9-3 shows a sample Workload Classification Document (or file) with the descriptions
of how to classify inbound IIOP, HTTP, and MDB requests.

Example 9-3 Sample WebSphere for z/OS Workload Classification Document

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE Classification SYSTEM "Classification.dtd" >
3 <Classification schema_version="1.0">

<!--
IIOP Classification Rules

-->
4 <InboundClassification type="iiop"

 schema_version="1.0"
 default_transaction_class="A0">

5 <iiop_classification_info transaction_class="A1"
application_name="IIOPStatelessSampleApp"
module_name="StatelessSample.jar"
component_name="Sample20"
description="Sample20 EJB Classification">

6 <iiop_classification_info transaction_class=""
method_name="echo"
description="No TCLASS for echo()"/>

7 <iiop_classification_info transaction_class="A1B"
method_name="ping"
description="Ping method" />

5a </iiop_classification_info>

Important: We discourage you from using this new Workload Classification Document in
conjunction with the old format HTTP classification and MDB classification files. If you
need to use both methods, observe these rules for simultaneous usage:

� The use of the new Workload Classification Document supersedes the use of the old
MDB classification file. WebSphere for z/OS does not use the endpoint_config_file
variable.

Migration consideration: If you are currently using a MDB classification document
specified by the endpoint_config_file variable, then you must convert this .xml file to the
new document format and refer to it with the wlm_classification_file variable.

� If the new Workload Classification Document is defined in a server that also has the old
style HTTP classification document specified and there are NO HTTP classification
rules in the Workload Classification Document, then the old format file contents are
used to classify inbound HTTP requests. However, if there are HTTP classification rules
present in the new Workload Classification Document, these classification rules are
used instead of the classification rules in the old style HTTP classification document.
268 System Programmer’s Guide to: Workload Manager

8 <iiop_classification_info application_name="*"
module_name="*"
component_name="*"
transaction_class="A2"
description="TCLASS the rest to A2">

9 <iiop_classification_info transaction_class="A2A"
method_name="resetFilter"
description="Spl case resetFilter()"/>

8a </iiop_classification_info>

4a </InboundClassification>
<!--

HTTP Classification Rules
-->

10 <InboundClassification type="http"
 schema_version="1.0"
 default_transaction_class="M">

11 <http_classification_info transaction_class="N"
host="wsc1.washington.ibm.com"
description="Virtual Host wsc1">

12 <http_classification_info transaction_class="O"
port="9080"
description="Def wsc1 HTTP reqs">

13 <http_classification_info transaction_class="Q"
uri="/gcs/admin"
description="Gcs"/>

14 <http_classification_info transaction_class="S"
uri="/gcs/admin/l*"
description="Gcs login"/>

12a </http_classification_info>
15 <http_classification_info transaction_class="P"

port="9081"
description=" Def wsc1 HTTPS reqs ">

16 <http_classification_info transaction_class=""
uri="/gcss/mgr/*"
description="GCSS Mgr"/>

15a </http_classification_info>
11a </http_classification_info>
10a</InboundClassification>

<!—-
MDB Classification Rules

-->

17 <InboundClassification type="mdb"
schema_version="1.0"
default_transaction_class="qrs">

18 <endpoint type="messagelistenerport"
name="IVPListenerPort"
defaultclassification="MDBX"
description="ABC">

19 <classificationentry selector="Location='East'"
classification="MDB1"
description="DEF"/>

20 <classificationentry selector="Location<>'East'"
classification="MDB2"
description="XYZ"/>

18a </endpoint>
21 <endpoint type="messagelistenerport"
Chapter 9. WebSphere Application Server workload considerations 269

name="SimpleMDBListenerPort"
defaultclassification="MDBX"
description="GHI"/>

17a</InboundClassification>

<!—-
Workload Classification Document for SDSR03x servers
Change History
--_----------
Activity Date Author
Created 08-01-2004 MCC

-->

3a </Classification>

The numbers correspond to the following points:

� We denote start elements in Example 9-3 on page 268 with a number (3) and end
elements corresponding to a start element have the same number suffixed with an “a” (3a).

� We do not explicitly denote child elements, but you can locate them in the example
between the labeled start and end element. For example, element 16 is a child element of
element 15, and you can see that element 16 is enclosed by start element 15 and end
element 15a. Child elements are indented to assist the reader.

Considerations
Example 9-4 on page 272 contains the DTD that defines this xml document and that you
need to use as the definitive reference for constructing a workload classification xml
document. For our descriptive purpose, we can use the above sample to illustrate how to
classify IIOP, HTTP, and MDB work in WebSphere for z/OS Version 5.1.

Elements 1, 2, 3, and 3a are required elements. Each Workload Classification Document must
start with the first three statements and end with the </Classification> statement.

Element 1 is an indicator that you must save the Workload Classification Document in ascii in
order for the Application Server to process it. If you create the document on z/OS in codepage
IBM-1047, which is the normal codepage for files existing in the HFS, then you must convert
the file to ascii prior to using it. There are two approaches for converting a working document
into a document that the server can use:

� native2ascii

Java SDK provides this utility to convert a file from the native codepage to the ascii
codepage. For example, if the working xml document is called
x5sr02.classification.ebcdic.xml and you want to create document
x5sr02.classification.xml, you use the following command:

/u/mccox -> native2ascii \
> x5sr02.classification.ebcdic.xml >x5sr02.classification.xml

� iconv

z/OS provides this utility to convert files from a designated codepage to a different
designated codepage. For example, if the working xml document is called
x5sr02.classification.ebcdic.xml and you want to create document
x5sr02.classification.xml, you use the following command:

/u/mccox -> iconv –f IBM-1047 –t UTF-8 \
> x5sr02.classification.ebcdic.xml >x5sr02.classification.xml
270 System Programmer’s Guide to: Workload Manager

In each case, the command line is too long to show on the page and is continued with the
backslash (\) character to the next line. Alternatively, you can create the Workload
Classification Document on your workstation and FTP the file to the correct location on z/OS
in binary format. If you also create the Classification.dtd file in the same directory as the
Workload Classification Document, then you can validity check the document prior to
installing it in a server using any utility providing a validating parser. For example, you can use
WebSphere Application Developer workbench to construct and validate the Workload
Classification Document.

Element 2 provides the parser with the name of the DTD document provided by WebSphere
for z/OS needed to verify the validity of the WLM classification document. This statement is
required.

Element 3 is the root of the document. This element is required and you must specify the
schema_version attribute. Currently, the only supported version number is 1.0. Element 3a is
the end element corresponding to the root element.

This Workload Classification Document contains rules for classifying IIOP, HTTP, and MDB
work. The InboundClassification element defines the type of work that is to be classified by
type of work specific child elements. The statement is:

<InboundClassification type="iiop | http | mdb"
schema_version="1.0"
default_transaction_class="value">

The following rules apply to the InboundClassification element:

� The type attribute is a required attribute and its value must be either iiop, http, or mdb.
Only one occurrence of an InboundClassification element can occur in the document for
each type. Therefore, there can be at most three InboundClassification elements in a
document. There is no required order for the InboundClassification elements, nor is an
InboundClassification required for each type. If, for example, there are no MDBs deployed
in a server, then there is no need for classification criteria.

� The schema_version attribute is a required attribute, and its value must be set to 1.0,
because this is the only value currently recognized by WebSphere.

� The default_transaction_class attribute must be specified. The string value must be a valid
WLM transaction class value, a null string (that is, “”), or a string containing eight or fewer
blanks.

� An InboundClassification end element (that is, </InboundClassification>) must appear
before the next occurrence of an InboundClassification element. InboundClassification
elements cannot be nested.

In this Sample Workload Classification Document, you can see that all three types of work
have classification rules defined. Elements 4 through 9 define IIOP classification rules,
elements 10 through 16 define HTTP classification rules, and elements 17 through 21 define
MDB classification rules. When an element has a separate end element statement, the
corresponding end element statement is denoted with an “a”, for example, 3 and 3a.

The rules and xml statements for classifying IIOP work and HTTP work are similar; there is
slightly different syntax. The rules and xml statements for classifying MDB work are
essentially the same as the old rules of classifying MDBs. We examine each section in the
Sample Workload Classification Document separately. Let us first look at the IIOP
classification, which is new in WebSphere for z/OS V5.1; then the HTTP classification, which
is different from before but basically the same as IIOP classification; and finally, the MDB
classification, which is basically unchanged. See Example 9-4.
Chapter 9. WebSphere Application Server workload considerations 271

Example 9-4 DTD for the Workload Classification XML Document

<?xml version='1.0' encoding="UTF-8"?>
<!ELEMENT Classification (InboundClassification+)>
<!ATTLIST Classification schema_version CDATA #REQUIRED>
<!ELEMENT InboundClassification
((iiop_classification_info+|http_classification_info+|endpoint+))>
<!ATTLIST InboundClassification type (iiop|mdb|http) #REQUIRED>
<!ATTLIST InboundClassification default_transaction_class CDATA #REQUIRED>
<!ATTLIST InboundClassification schema_version CDATA #REQUIRED>
<!ELEMENT iiop_classification_info (iiop_classification_info*)>
<!ATTLIST iiop_classification_info application_name CDATA #IMPLIED>
<!ATTLIST iiop_classification_info component_name CDATA #IMPLIED>
<!ATTLIST iiop_classification_info description CDATA #IMPLIED>
<!ATTLIST iiop_classification_info method_name CDATA #IMPLIED>
<!ATTLIST iiop_classification_info module_name CDATA #IMPLIED>
<!ATTLIST iiop_classification_info transaction_class CDATA #REQUIRED>
<!ELEMENT endpoint (classificationentry*)>
<!ATTLIST endpoint defaultclassification CDATA #REQUIRED>
<!ATTLIST endpoint name CDATA #REQUIRED>
<!ATTLIST endpoint type (messagelistenerport) #REQUIRED>
<!ATTLIST endpoint description CDATA #IMPLIED>
<!ELEMENT classificationentry EMPTY>
<!ATTLIST classificationentry classification CDATA #REQUIRED>
<!ATTLIST classificationentry selector CDATA #REQUIRED>
<!ATTLIST classificationentry description CDATA #IMPLIED>
<!ELEMENT http_classification_info (http_classification_info*)>
<!ATTLIST http_classification_info host CDATA #IMPLIED>
<!ATTLIST http_classification_info port CDATA #IMPLIED>
<!ATTLIST http_classification_info uri CDATA #IMPLIED>
<!ATTLIST http_classification_info description CDATA #IMPLIED>
<!ATTLIST http_classification_info transaction_class CDATA #REQUIRED>

Classification rules for IIOP
The InboundClassification element with attribute type=“iiop” defines the section of the
document that is applicable to IIOP classification. Specifically, an element, such as this
example, starts the section:

<InboundClassification type="iiop"
schema_version="1.0"
default_transaction_class="value1">

IIOP work can be classified based on the following J2EE™ application artifacts:

� Application name: This is the name of the application containing the EJBs. It is the display
name of the application, which is not necessarily the name of the .ear file containing all the
artifacts.

� Module name: This is the name of the EJB™ .jar file containing one or more EJBs (there
can be multiple EJB .jar files contained in an .ear file).

� Component name: This is the name of the EJB contained in a module (or EJB .jar) (there
can be one or more EJBs contained in an EJB .jar file).

� Method name: This is the name of a remote method on an EJB.

WebSphere provides the flexibility of classifying IIOP work in various applications at any of
these levels through the iiop_classification_info element. The format of the
iiop_classification_info element is:

<iiop_classification_info transaction_class="value1"
[application_name="value2"]
272 System Programmer’s Guide to: Workload Manager

[module_name="value3"]
[component_name="value4"]
[method_name="value5"]
[description="value6"] >

The iiop_classification_info element allows you to build filters based on the application,
module, component, and method names, which assign TCLASS values to inbound requests.

The following rules apply to the iiop_classification_info element:

� You must specify the transaction_class attribute. The string value must be a valid WLM
transaction class value, a null string (that is, “”), or a string containing eight or fewer
blanks. Specifying a null or blank string allows you to override a default TCLASS setting
(or one assigned by a higher level filter) and not have a TCLASS value for the request.

� You can specify the attributes application_name, module_name, component_name, and
method_name with one of these:

– The exact name of the application, module, component, or method (for example,
“MAYPOLE”)

– A wildcard value (for example, “MAY*”, which matches any string starting with “MAY”)

– The asterisk character “*”, which matches any value.

These attributes act as selectors or filters that either assign a transaction class or allow
subsequent nested iiop_classification_info elements to assign the transaction class. You
can specify one or more of the application_name, module_name, or component_name
attributes on one iiop_classification_info element. You do not need to use all of the
attributes to make a classification filter. Only use the granularity required. If for instance,
there is only one application in the server, then the xml document describing the
classification rules for that server does not need an iiop_classification_element with the
application_name attribute specified.

� You can nest the iiop_classification_info elements in a hierarchical manner. This allows
you to construct hierarchical classification filters based on attribute values. For example,
consider this filter:

<iiop_classification_info transaction_class="FAST"
application_name="MyAPP1"
component_name=”EJB1”/>

<iiop_classification_info transaction_class="SLOW"
application_name="MyApp1"
component_name=”EJB2”/>

And this filter:

<iiop_classification_info transaction_class="MEDIUM"
application_name="MyAPP1>"

<iiop_classification_info transaction_class="FAST"
component_name=”EJB1”/>

<iiop_classification_info transaction_class="SLOW"
component_name=”EJB2”/>

</iiop_classification_info>

Both filters have the same effect when classifying requests on EJB1 and EJB2 in
application MyAPP1. However, the second filter also classifies requests on any other EJB
in the application “MyApp1”, unlike the first filter.

� Specifying an attribute value that conflicts with the parent element’s attribute value
effectively negates the lower level filter. For example:

<iiop_classification_info transaction_class="FAST"
application_name="MyAPP1">

<iiop_classification_info transaction_class="SLOW"
Chapter 9. WebSphere Application Server workload considerations 273

application_name="MyApp2"/>
</iiop_classification_info>

This filter construction never results in EJB requests in MyApp2 assigned transaction
class “SLOW”. The higher level filter only allows IIOP requests for
application_name=”MyApp1” to be passed to a lower level filter.

� The order of iiop_classification_info statements is significant at each level. The first filter at
a specific level that matches the attributes of the request is the one that is used, not the
“best or most restrictive” filter. For example:

<iiop_classification_info transaction_class="FAST"
application_name="MyAPP"/>

<iiop_classification_info transaction_class="SLOW"
component_name="*"/>

<iiop_classification_info transaction_class="MEDIUM"
component_name="MySSB"/>

</iiop_classification_info>

In the above example, all the IIOP requests processed by EJBs in the application named
“MyApp” will be assigned a TCLASS value of “SLOW”. This is true for requests to the EJB
named “MySSB” as well. Even though “MySSB” is explicitly assigned a TCLASS value of
“MEDIUM”, this filter is not applied. The filter preceding it matches and the TCLASS
assignment will be made, and the remainder of the filters at that level will be ignored.

� The description field is optional. However, you need to use a description on all
iiop_classification_info elements. This description string is printed as part of the operator
command support and allows you to identify the classification rule used. Using a
reasonably terse description is best, because it displays on the MVS console.

In the Sample Workload Classification Document, there are two level one IIOP filters defined.
The first level one filter is defined by element 5 and the second by element 8.

The first filter is set up to explicitly assign transaction class values to the Sample20 EJB,
residing in the StatelessSample.jar file, which is part of the application named
IIOPStatelessSampleApp. Any method on this specific EJB will be assigned a TCLASS value
of “A1” unless a lower level filter assigns a different TCLASS value. In this example, there are
lower level filters defined with elements 6 and 7, which are specific only for the ping() and
echo() methods:

� In the case of the ping() method, a null TCLASS value will be assigned (or no TCLASS
value will be assigned). This will result in no TCLASS value used by WLM in the
classification of the enclave.

� In the case of the echo() method, a TCLASS value of “A1B” will be assigned.

The second filter is set up to implicitly assign a transaction class to any other IIOP work not
selected by the first filter, and assigns a transaction class of “A2” to work requests other than
requests on the resetFilter() method, which is assigned a TCLASS value of “A2A”.

If you look closely at the IIOP classification section, you will notice two important things:

� The default_transaction_class attribute value of “A1” on the InboundClassifcation element
will not be used. The second filter will effectively match all requests and assign TCASS
value of “A2” or “A2A” as described above.

� The order of the two level 1 filters is important. If you reversed the order of these two filters
in the document, the level 1 filter defined by element 5 is never used, because the very
generic level 1 filter defined by element 8 matches every inbound request.

This example is quite simple. Because multiple attributes are specified on the first level filter,
the nesting of iiop_classification_info elements is very shallow. There are, in fact, only two
274 System Programmer’s Guide to: Workload Manager

levels to either filter. You can certainly construct a filter with greater depth by specifying only
one attribute per iiop_classification_level, which results in a filter of depth equal to 4.

And while it seems to make sense building filters that select at the application level and work
down to the components residing in the application, there is no requirement that the high-level
filter is based on application_name. What is important is that the filters that are created are
constructed in a coherent manner so that the transaction classification value you want to
assign is actually assigned.

We recommend that you keep the number of filters and the complexity of filters as simple as
possible and yet retain the required level of classification needed by the installation. There is
in fact a cost to associating a TCLASS value to inbound IIOP work. WebSphere for z/OS
provides a new operator command that you can use to inquire about the classification of IIOP
requests, the number performed, which classification was used, and a heuristic cost value of
using a filter.

Classification rules for HTTP
The InboundClassification element with attribute type=”http” defines the section of the
document that is applicable to IIOP classification. Specifically, an element like the following
starts the section:

<InboundClassification type="http"
schema_version="1.0"
default_transaction_class="value1">

HTTP work can be classified based on the following J2EE application artifacts:

� Virtual Host Name: This is the host name in the HTTP header to which the inbound
request is sent.

� Port Number: This is the port on which the HTTP catcher is listening.

� Uniform Resource Identifier (URI): This is the string that identifies the Web application.
WebSphere provides the flexibility of classifying HTTP work in various applications at any
of these levels through the http_classification_info element. The format of the
http_classification_info element is:

<http_classification_info transaction_class="value1"
[host="value2"]
[port="value3"]
[uri="value4"]
[description="value5"] >

The http_classification_info element allows you to build filters based on the application,
module, component, and method names that will assign TCLASS values to inbound requests.

The following rules apply to http_classification_info element:

� You must specify the transaction_class attribute. The string value should be a valid WLM
transaction class value, a null string (that is, “”), or a string containing eight or fewer
blanks. Specifying a null or blank string allows you to override a default TCLASS setting
(or one assigned by a higher level filter) and not have a TCLASS value for the request.

� You can specify attributes host, port, and uri with one of these:

– The exact name of the host, port, or uri (for example, “MAYPOLE”)

– A wildcard value (for example, “MAY*”, which matches any string starting with “MAY”)

– The asterisk, “*”, which matches any value

These attributes act as selectors or filters that will either assign a transaction class or allow
subsequent nested http_classification_info elements to assign the transaction class. You can
Chapter 9. WebSphere Application Server workload considerations 275

specify one or more of the host, port, or uri attributes on one http_classification_info element.
You do not need to use all attributes to make a classification filter. Only use the granularity
required. If, for instance, there is only one application in the server, then the xml document
describing the classification rules for that server does not need an http_classification_info
element with the uri attribute specified:

� You can nest http_classification_info elements in a hierarchical manner. This allows you to
construct hierarchical classification filters based on attribute values. For example, consider
the following filter:

<http_classification_info transaction_class="FAST"
host="MyVHost1.com"
uri=”/MyWebApp1/*”/>

<http_classification_info transaction_class="SLOW"
host="MyVHost2.com"
uri=”/MyWebbApp2/*”/>

And this filter:

<http_classification_info transaction_class="MEDIUM"
host="MyVHost1.com>"

<http_classification_info transaction_class="FAST"
uri=”/MyWebApp1/*”/>

<http_classification_info transaction_class="SLOW"
uri=”/MyWebApp2/*”/>

</http_classification_info>

Both filters will have the same effect when classifying requests to Web applications
identified by context roots /MyWebApp1 and /MyWebApp2 in this Application Server
hosting Web applications for virtual host “MyVhost1.com”. However, the second filter will
also classify requests on any other context root in the Application Server, unlike the first
filter.

� Specifying an attribute value as different from the parent element’s attribute value
effectively negates the lower level filter. For example:

<http_classification_info transaction_class="FAST"
uri="/MyWebApp1/*">

<http_classification_info transaction_class="SLOW"
uri="/MyWebApp2">

</iiop_classification_info>
</iiop_classification_info>

This specification never results in Web applications with context root /MyWebApp2
assigned transaction class “SLOW”. The higher level filter only allows HTTP requests with
a context root of /MyWebApp1 to be passed to a lower level filter.

� The order of http_classification_info statements is significant at each level. The first filter at
a specific level that matches the attributes of the request is the one that is used, not the
“best or most restrictive” filter. For example:

<http_classification_info transaction_class="FAST"
host="MyVHost.com"/>

<http_classification_info transaction_class="SLOW"
uri="*"/>

<http_classification_info transaction_class="MEDIUM"
uri="/MyWebAppX/*"/>

</http_classification_info>

In the above example, all the HTTP requests that processed the application server for
virtual host “MyVhost.com” will be assigned a TCLASS value of “SLOW”. This is true for
requests to Web applications with context root /MyWebAppX as well. Even though
uri=“/WebAppX/*” is explicitly assigned a TCLASS value of “MEDIUM”, this filter is not
276 System Programmer’s Guide to: Workload Manager

applied. The filter preceding it matches and the TCLASS assignment is made and the
remainder of the filters at that level are ignored.

� The Description field is optional, although you need to use it on all http_classification_info
elements. It is printed as part of the operator command support and allows you to identify
the classification rule used. Use a reasonably terse description because it displays on the
MVS console.

In the Sample Workload Classification Document, there is one HTTP filter IIOP filter defined
with two second level filters. Each of these second level filters has one or more third level
filters. The level one filter (that is, 11) is set up to explicitly assign transaction class values to
all Web applications associated with virtual host “wsc1.washington.ibm.com”. Any Web
applications in the server under any other virtual host name have the transaction class from
the enclosing InboundClassification element (that is, TCLASS value of “M”).

The two second level filters, 11 and 15, distinguish between HTTP and HTTPS requests. This
is not obvious unless you know that port 9080 is for HTTP and 9081 is for HTTPS. Within the
http requests there are two URIs, which are special-cased with third level filters (that is, 13
and 14). Similarly, for HTTPS requests there is one URI, which is special-cased (that is, 16).

This example is quite simple. Basically, the filters are established to assign transaction
classes for special URIs within transports for one specific virtual host. And while it seems to
make sense to build filters that select at the virtual host level and work down to the URIs
defining the Web application, there is no requirement that the high-level filter is based on
host=. If all of the Web applications in the server are under one virtual host, then perhaps
context root (that is, uri=) is a better choice for setting up the level one filters. What is
important is that you construct the filters in a coherent manner so that the classification you
want to assign is the classification that is actually assigned.

We recommend that you keep the number of filters and the complexity of filters as simple as
possible and yet retain the required level of classification needed by the installation. There is,
in fact, a cost to associating a TCLASS value to inbound IIOP work. WebSphere for z/OS
provides a new operator command that you can use to inquire about the classification of IIOP
requests, the number performed, which classification was used, and a heuristic cost value of
using a filter.

Classification rules for Message Driven Beans (MDBs)
Starting with WebSphere for z/OS Release 5.0.2, you can associate a Message Driven Bean
to a transaction class within the CB subsystem. The filter elements that you can use for MDB
classification are:

� Listener Port (Endpoint)
� Message Selector (XML tags)

As for the other transactions running in the CB subsystem, you can assign a default
transaction class to the servant and a default transaction class to the MDBs that will not have
the transaction class explicitly assigned. Example 9-5 shows a sample of the WLM
definitions.

Example 9-5 WLM definitions for the MDB environment

Modify Rules for the Subsystem Type Row 1 to 15 of 16
Command ===> __ SCROLL ===> PAGE

Subsystem Type . : CB Fold qualifier names? Y (Y or N)
Description . . . WebSphere App Server

Action codes: A=After C=Copy M=Move I=Insert rule
Chapter 9. WebSphere Application Server workload considerations 277

 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 --------Qualifier-------- -------Class--------
Action Type Name Start Service Report
 DEFAULTS: WASDF OTHER
 ____ 1 CN ETDMGR* ___ WASDM WASE
 ____ 1 CN SDSR03* ___ WASLO WASE
 ____ 2 TC MDB ___ WASDF WASE
 ____ 2 TC MDBD ___ WASLO WASE
 ____ 2 TC MDBQ ___ WASLO WASE
 ____ 2 TC MDBT ___ WASHI WASE
 ____ 1 CN ETSR0* ___ WASHI WASE
 ____ 2 TC SGETA001 ___ WASDF SGETA001
 ____ 2 TC SGETA002 ___ WASDF SGETA002
 ____ 2 TC SGETA003 ___ WASDF SGETA003
 ____ 1 CN ET* ___ WASDF WASE

The WLM classifications for the enclaves representing the MDBs running in the SDSR03
server are:

� Enclaves running in the SDSR03 server with a Transaction Class other than MDB, MDBD,
MDBQ, and MDBT are classified with the server default transaction class of WASLO.

� Message Driven Beans without a specific Transaction Class assigned are classified with
the MDB default transaction class.

� Enclaves with a transaction class value of MDB, MDBQ, and MDBT are classified:

– Transaction Class MDB associated with service class WASDF
– Transaction Class MDBD associated with service class WASLO
– Transaction Class MDBQ associated with service class WASLO
– Transaction Class MDBT associated with service class WASHI

To be able to associate an MDB transaction to a transaction class, you need (similar to the
transaction mapping file) an .xml file where the association is defined, and you must define it
to the server through the administration console.

From the initial panel, select Environment Manage WebSphere Variables, where you
can specify the path and name of the mapping file for the variable endpoint_config_file (for
example, u/franck/MDBClass6356.xml, as shown in Figure 9-10).
278 System Programmer’s Guide to: Workload Manager

Figure 9-10 Environment variable definition

A transaction class mapping file allows us to associate an incoming MDB to a specific
transaction class. At execution time, WLM will use the transaction class to associate the work
request to a service class. Example 9-6 shows a transaction class mapping file.

Example 9-6 MDB transaction mapping file

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE InboundClassification SYSTEM "InboundClassification.dtd">
<InboundClassification type="mdb" version="1.0">

<endpoint type="messagelistenerport"
name="ListenerPort"
defaultclassification="MDBD">

<classificationentry selector="Operation='Query'"
classification="MDBQ"/>

<classificationentry selector="Operation='Trade'"
classification="MDBT"/>

</endpoint>
</InboundClassification>

In Example 9-6, the endpoint element describes each listener port that is defined in the
server that you want to associate transaction classes with the MDB. The listener port to which
a endpoint element applies is specified by the name attribute. The value of the name attribute
must be the name of the listener port, as specified in the administration console for the server.
The default transaction class associated with MDBs assigned to the listener class is specified
by the defaultclassification element and will override the WebSphere default transaction
classification assignment value (that is, MDBD).

In our example, we have a listener port called ListenerPort with the default transaction class
assigned to ‘MDBD’.

You can have further classifications within the endpoint element, as shown in Example 9-6 on
page 279. The classificationentry element applies only to the MDB whose selector clause
appears in the selector attribute of the element. The MDBs, whose selector clauses matches
this classification entry, will be assigned to the enclave.
Chapter 9. WebSphere Application Server workload considerations 279

After you have completed your definitions, the WebSphere environment variable named
endpoint_config_file must point to the transaction class mapping file, which is normally set at
the server level using the administration console, as shown in Figure 9-10 on page 279. You
need to recycle the server in order to pick up the new definitions.

9.4 Types of goals
There are two predominant types of goal for this environment: Velocity goals to be assigned
to control region servant address spaces and response time goals for the enclave because of
the transactionality of this type of workload.

For the enclave, as discussed earlier, you can classify them and assign different goals
depending on the type of workload and your service level agreement.

9.5 Reporting
From a reporting point of view, you need to evaluate performance data for all of the elements
that are part of the WebSphere environment: servant regions, control regions, and the
transactional part with enclaves. If you have created specific reporting classes associated
with these elements, you can use the report class section in the RMF Workload Activity report
and on the SYSINFO report to understand how the different elements behave.

Example 9-7 on page 281 shows an extract from the RMF Workload Activity report where the
control region, servant regions, and the enclaves are associated to a different reporting class
to better visualize their behavior.

Interesting information from the report is:

Transaction/second In the enclave reporting class session, the fields
TRANSACTIONS AVG, TRANSACTIONS MPL, and
AV ENC are equal and do not represent the number of
enclaves or transactions processed in this interval of
time. It represents the average number of enclaves or
transactions active in this interval of time.

Response time In the enclave reporting class session, the field
TRAN-TIME ACTUAL should be close to the value
reported in EXECUTION time. The time includes the
time waiting on the WLM queue.

CPU and service rates The CPU service units and the service unit per second
are reported in the SERVICE CPU field and in the
/SEC. The field APPL% represents the number of
engines required to drive the work in the service class
(the portion of this service class accounted against
this reporting class).

Delays The field QMPL identifies how long this workload has
been waiting for servant regions.

APPL% This field represents the number of engines (CP)
required to drive the work in the service or report class.

CPU seconds per transactions This field represents the ServiceRate TCB per second
/ ENDED Transactions.
280 System Programmer’s Guide to: Workload Manager

Example 9-7 Extract of RMF Workload Activity report

REPORT BY: ... REPORTCLASS=WAS - Control Region
TRANSACTIONS TRANS.-TIME SS.TTT ---SERVICE-- --SERVICE RATES--
AVG 1.00 ACTUAL 0 IOC 0 ABSRPTN 89615
MPL 1.00 EXECUTION 0 CPU 522567 TRX SERV 89615
ENDED 0 QUEUED 0 MSO 10159K TCB 39.9
END/S 0.00 R/S AFFINITY 0 SRB 61728 SRB 4.7
#SWAPS 0 INELIGIBLE 0 TOT 10743K RCT 0.0
EXCTD 0 CONVERSION 0 /SEC 89630 IIT 0.0
AVG ENC 0.00 STD DEV 0 HST 0.0
REM ENC 0.00 APPL % 37.2

REPORT BY: ... REPORTCLASS=WASS - Server Regions
TRANSACTIONS TRANS.-TIME SS.TTT ---SERVICE-- --SERVICE RATES--
AVG 3.00 ACTUAL 0 IOC 0 ABSRPTN 183074
MPL 3.00 EXECUTION 0 CPU 214567 TRX SERV 183074
ENDED 0 QUEUED 0 MSO 30667K TCB 39.9
END/S 0.00 R/S AFFINITY 0 SRB 18553 SRB 4.7
#SWAPS 0 INELIGIBLE 0 TOT 30900K RCT 0.0
EXCTD 0 CONVERSION 0 /SEC 259664 IIT 0.0
AVG ENC 0.00 STD DEV 0 HST 0.0
REM ENC 0.00 APPL % 15.0

REPORT BY: ... REPORTCLASS=WASE - WebSphere Enclaves (Transactions)
TRANSACTIONS TRANS.-TIME SS.TTT ---SERVICE-- --SERVICE RATES--
AVG 301.24 ACTUAL 332 IOC 0 ABSRPTN 118
MPL 301.24 EXECUTION 323 CPU 3454K TRX SERV 118
ENDED 107561 QUEUED 4 MSO 0 TCB 261.4
END/S 903.87 R/S AFFINITY 0 SRB 0 SRB 0.0
#SWAPS 0 INELIGIBLE 0 TOT 3454K RCT 0.0
EXCTD 0 CONVERSION 0 /SEC 18 IIT 0.0
AVG ENC 301.24 STD DEV 66 HST 0.0
REM ENC 0.00 APPL % 215.8

EX PERF AVG --USING%-- ----- EXECUTION DELAYS % -----
VEL INDX ADRSP CPU I/O TOTAL CPU QMPL

GOAL 40.0%
ACTUALS 45.3% .89 13.4 0.1 0.0 36.1 23.5 12.6

Example 9-8 on page 281 shows an RMF Monitor III SYSINFO report where you can see that
the enclaves have been processed, and you can use the service class or report class to verify
the resource consumption.

Example 9-8 RMF Monitor III SYSINFO report

RMF V1R5 System Information Line 1 of 21
Command ===> Scroll ===> CSR

Samples: 97 System: SC69 Date: 04/06/05 Time: 14.13.20 Range: 100 Sec

Partition: A0A 2084 Model 318 Appl%: 2 Policy: SPSTPC
CPs Online: 2.0 Avg CPU Util%: 7 EAppl%: 5 Date: 04/04/05
IFAs Online: - Avg MVS Util%: 7 Appl% IFA: - Time: 17.54.29

Group T WFL --Users-- RESP TRANS -AVG USG- -Average Number Delayed For -
 % TOT ACT Time /SEC PROC DEV PROC DEV STOR SUBS OPER ENQ

*SYSTEM 93 98 0 0.12 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0
*TSO 100 6 0 0.12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
*BATCH 0 0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Chapter 9. WebSphere Application Server workload considerations 281

*STC 92 85 0 0.00 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
*ASCH 0 0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
*OMVS 7 0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
*ENCLAVE 100 0 N/A N/A 0.0 N/A 0.0 N/A 0.0 N/A N/A N/A
DB2RES W 100 0 0 .021 16.53 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
WASHI S 100 0 0 .021 16.53 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
OTHER W 7 0 .000 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
VEL70 S 7 0 .000 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SYSTEM W 92 84 0 .000 0.00 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
SYSSTC S 100 62 0 .000 0.00 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
SYSTEM S 85 22 0 .000 0.00 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TSO W 100 6 0 .089 0.12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ITSOTSU S 3 0 .002 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ITSOTSY S 100 3 0 .106 0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
WBIFN W 1 0 .000 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
VELRRS S 1 0 .000 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
WASE R 100 0 0 .021 16.53 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
OTHER R 92 84 0 .000 0.00 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
RTSO R 100 6 0 .089 0.12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

For more information about performance data about enclaves, refer to 8.3.7, “Enclave
reporting” on page 240.
282 System Programmer’s Guide to: Workload Manager

Chapter 10. UNIX System Services
considerations

In this chapter, we provide guidelines for defining and managing a UNIX System Services
(USS) workload under Workload Manager (WLM).

We provide the basic USS concepts and how to integrate USS work in an WLM environment.

10
© Copyright IBM Corp. 2005, 2006, 2007. All rights reserved. 283

10.1 General considerations
Before going deeper into the USS workload management in WLM, we introduce basic
concepts and terminology.

10.1.1 Unix System Services terminology
These are the most common concepts and terms used in UNIX environment:

� Kernel: The heart of the UNIX operating system is the kernel. The kernel is similar to the
MVS BCP. It is responsible for interfacing between programs and hardware, scheduling
work, I/O management, and storage management. The kernel also manages the work that
is in the system.

� Process: In UNIX, a unit of work is a process. In MVS, when a non-UNIX user logs on, an
address space is created with multiple tasks (TCBs) running in the address space to
represent that user. In the UNIX environment, when a user logs in, a process is forked to
allow the workspace to be dedicated to the new user. In z/OS, this new process is really an
address space. This newly forked unit of work can fork additional units of work to create
new processes, and parameters (arguments) are passed to the new process.

� Fork: One process can create another process by the use of the fork command. Fork is
similar to an MVS attach in that it creates another unit of work that can execute
independently. The difference in UNIX, however, is that the created process (called the
child process, PID) has access to all of the open files of the creating process (called the
parent, PPID). The child does not have to open the files, because they are already open.
In z/OS UNIX, a new address space is created for each forked process. The address
spaces are created by the WLM and managed in a WLM Application Environment.

� Spawn: In most UNIX programs, the fork of a process is followed by an exec to run the new
program. When applications are ported to z/OS UNIX, one performance improvement that
should be made to applications is to replace the fork and exec combination with an
z/OS-specific service called spawn. Spawning a process on z/OS simply means a new
process will be forked, and the new program will be executed all at once. It creates a child
process that will execute a different program than the parent, either in a new address
space scheduled by WLM, or in the same address space as the parent process (local
spawn).

� Threads: A program executing in a process is actually executing on a thread within a
process. Threads are separate dispatchable units of work within a process, and are a way
for an application to execute independent units of work currently. The benefits are that all
the threads in a process can share all the resources owned by the process. Some
applications have just one or a few threads per process, and others have many threads
per process.

� Syscall: Is a request by an active process for a system service by the kernel.

� Daemon: Long-running processes are called daemons and are similar to MVS-started
tasks.

10.1.2 Unix System Services address spaces
In z/OS, USS code runs in different address spaces:

� OMVS: Address space containing support for Unix System Services
� BPXOINIT: Initialization process routine (process ID 1)
� BPXAS: Initiator started by WLM and used to create an address space for a forked

process
284 System Programmer’s Guide to: Workload Manager

Figure 10-1 shows the basic USS address spaces.

Figure 10-1 USS address spaces

You can execute UNIX work in several ways:

� Daemon: Process running in the background, not with any particular user.

� Dubbed address spaces: Traditional z/OS address space that calls a USS function. When
a program uses a z/OS UNIX Assembler callable service, the z/OS address space will be
dubbed a z/OS UNIX process. The address space will get a PID. The dub will not result in
a new address space.

� Batch: The BPXBATCH z/OS utility allows UNIX processes to execute in an MVS batch
environment.

� TSO: OMVS and ISHELL commands.

� Traditional USS programs: For example, rlogin and telnet requests coming from remote
clients.

Figure 10-2 on page 286 summarizes these concepts.

B P X A S
 a d d re ss
 sp a ce s
 (in it ia to r)

B P X A S
 a d d re ss
 sp a ce s
 (in itia to r)

B P X A S
 a d d re ss
 sp a ce s
 (in itia to r)

B P X O IN IT
a d d re s s

sp a ce
(in itia liza tio n

p ro ce ss)

O M V S
a d d re ss

sp a ce
(ke rn e l)

Chapter 10. UNIX System Services considerations 285

Figure 10-2 Work in z/OS USS environment

10.1.3 USS and WLM
USS uses WLM for three purposes:

� To create and maintain a pool of address spaces for fork and spawn function calls.
� To classify and manage all of the UNIX System Services address spaces.
� Enclave management across fork and spawn.

UNIX Services fork and spawn function calls
WLM is used to create and delete the UNIX Services fork and spawn address spaces.

WLM creates server address spaces (BPXAS) on demand and maintains a free pool of
server address spaces to be reused by subsequent fork and spawn requests. These server
address spaces are known as WLM fork initiators. An idle BPXAS Initiator will time out after
30 minutes of idle time.

A request for a WLM fork initiator is synchronous if the free pool of initiators is not empty, as
shown in Figure 10-3 on page 287. When a request arrives, WLM resumes the SRB of the
initiator task. When awakened, the initiator task correlates itself to the pending fork/spawn
request. When the child task ends, its initiator SRB is suspended, and the initiator returns to
the free pool.

Non-USS
Programs

USS
Programs

Mixed Programs
Dubbed

OS/390
Services

Unix System Services

Note: The creation of these WLM fork initiators is based solely on demand, not on goal
management.
286 System Programmer’s Guide to: Workload Manager

Figure 10-3 WLM fork and spawn synchronous processing

If the fork initiator pool is empty, WLM returns a non-zero return code to the USS, creates an
ECB, and the application goes into a wait state, as shown in Figure 10-4. The request for an
initiator is queued to WLM, which creates a new fork initiator using the
SYS1.PROCLIB(BPXAS) procedure, adds it to the pool, and posts the ECB.

Figure 10-4 WLM fork and spawn asynchronous processing

Forked
address

space

Forked
address

space

Application

Fork()

OMVS
kernel

Request
Init to
WLM

WLM

resumes
the INIT

SRB

Forked
address

space

Forked
address

space

Forked
address

space

Application

Fork()

OMVS
kernel

Request
Init to
WLM

WLM

resumes
the INIT

SRB

Forked
address

space

OMVS
kernel

Request
Init to WLM

WLM

creates the
INIT

posts ECB

Forked
address
space

ECB

Application

Fork()

wait ECB

Chapter 10. UNIX System Services considerations 287

WLM uses the BPXAS procedure in SYS1.PROCLIB to start a new initiator address space.
The JOB and EXEC card information used to create these address spaces is overwritten
when an actual fork or spawn is processed. During system initialization, running initialization
routines can cause the creation of some BPXAS initiators (around 10), which become idle
after initialization.

There are situations where you want to stop these initiators before they time out (for instance,
if you want to shut down your system). However, you cannot stop your JES subsystem cleanly
without stopping the idle BPXAS address spaces. To stop these address spaces, use the
following command:

F BPXOINIT,SHUTDOWN=FORKINIT

You can display initiators by using an MVS DISPLAY command:

D A,BPXAS

Example 10-1 Displaying the WLM-created fork and spawn address spaces

BPXAS BPXAS IEFPROC OWT IO A=006F PER=NO SMC=000
 PGN=N/A DMN=N/A AFF=NONE
 CT=000.064S ET=01729.53
 WUID=STC07819 USERID=OMVSKERN
 WKL=OTHER SCL=VEL70 P=1
 RGP=N/A SRVR=NO QSC=NO
 ADDR SPACE ASTE=03924BC0
BPXAS BPXAS IEFPROC OWT IO A=001B PER=NO SMC=000
 PGN=N/A DMN=N/A AFF=NONE
 CT=000.002S ET=NOTAVAIL
 WUID=STC18253
 WKL=SYSTEM SCL=SYSSTC P=1
 RGP=N/A SRVR=NO QSC=NO
 ADDR SPACE ASTE=039236C0

This command shows you all active or idle (but still in the WLM pool) address spaces that
UNIX System Services is using or can use for fork and spawn function calls. Address spaces
where no elapsed time is available (ET=NOTAVAIL) are idle and stay in the pool for new fork
or spawn calls.

Fork, spawn, and enclave propagation
Enclaves can be created by USS on specific services or by any authorized user.

If the calling parent task, which issues the fork or spawn instruction is in a WLM enclave, the
child is joined to the same WLM enclave. This allows WLM to manage the parent and child as
one “business unit of work” entity for system accounting and management purposes.

USS uses the enclave propagation mechanism when an enclave is found at time of fork or
spawn.

After APAR OA05701, USS provides a new environment variable,
_BPXK_WLM_PROPAGATE, that can be set to 'NO', indicating to the kernel that WLM
enclaves not created by USS will not be propagated on any of its services. If set to YES
(default), USS still propagates any enclave that is found at the time of a fork, exec,
pthread_create, FastCGI, or osenv request.

Note: You do not need any tuning or definition in order to use WLM for the fork and spawn
function calls.
288 System Programmer’s Guide to: Workload Manager

Figure 10-5 shows an example of enclave propagation through USS.

Figure 10-5 Forked child enclave propagation

10.2 Controlling the performance of your USS work
In an z/OS environment, you are able to control the performance of your UNIX work using
functions provided by the UNIX services and WLM.

You must customize the WLM service definition for the UNIX System Services workload:

� Define services classes for USS work:

– Define a service class for kernel, BPXOINIT, and BPXAS.

– Define a service class for startup processes that are forked by the initialization process
BPXOINIT.

– Define a service class for other forked children.

– Define a service class for daemons.

� Define classification rules for:

– Kernel

– Initialization process BPXOINIT

– Startup processes forked by BPXOINIT

– Forked child processes

– Daemons

Application

fork()

OMVS
kernel

fork

Forked
address

space

Enclave

Application

fork()

OMVS
kernel

fork

Forked
address

space

Application

fork()

OMVS
kernel

fork

Forked
address

space

Enclave
Chapter 10. UNIX System Services considerations 289

10.2.1 Types of goals and classification rules
In this section, we give general recommendations for defining your service classes and
classification rules.

Definitions for USS started tasks
Put the kernel (classified with TN=OMVS) into a high-priority started task (subsystem type
STC) service class. Another option is to keep the OMVS started procedure in the SYSSTC
service class.

Put the initialization process BPXOINIT (classified with TN=BPXOINIT) into a high-priority
started task (subsystem type STC) service class. Another option is to keep the BPXOINIT
started procedure in the SYSSTC service class.

Put the fork initiators BPXAS (classified with TN=BPXAS) into a high-priority Started Task
(subsystem type STC) service class. Another option is to keep the BPXAS started procedure
in the SYSSTC service class.

Example 10-2 shows the classification rules for OMVS, BPXOINIT, and BPXAS address
spaces.

Example 10-2 USS STC classification rules

Modify Rules for the Subsystem Type Row 1 to 10 of 85
Command ===> __ SCROLL ===> PAGE

Subsystem Type . : STC Fold qualifier names? Y (Y or N)
Description . . . ________________________________

Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 --------Qualifier-------- -------Class--------
Action Type Name Start Service Report
 DEFAULTS: STCLOW
 ____ 1 TN OMVS ___ SYSSTC ________
 ____ 1 TN BPXOINIT ___ SYSSTC ________
 ____ 1 TN BPXAS ___ SYSSTC ________

Also, define a service class for daemons. Treat daemons the same as other started tasks of
similar importance. Their service class normally has only one period with a velocity goal
higher than the velocity goals of other forked children. If a daemon is critical for your business,
consider putting it in the SYSSTC service class.

Definitions for OMVS subsystem type work
The OMVS subsystem type includes work requests processed in UNIX System Services
forked address spaces. It does not apply to dubbed address spaces, such as batch programs
that issue UNIX System Services callable services. If a TSO/E, batch, or started task uses
UNIX System Services services, it does not change subsystem type and does not use
subsystem type OMVS.

Note: If not classified, OMVS and BPXOINIT will be assigned to the SYSTEM service
class.
290 System Programmer’s Guide to: Workload Manager

Subsystem OMVS classifies the following USS works:

� Startup processes forked by the initialization process BPXOINIT. They are identified by
USERID=OMVSKERN. Give their service class a velocity goal that is higher than that of
other forked children.

� Other forked child processes. You can assign them to different service classes based on
USERID, ACCTINFO, TRXNAME, and so on. Specify a number of performance periods
for the service class for forked children. Give performance periods for short-running work
response-time goals or percentage response-time goals. Give velocity goals to
performance periods for long-running work. You need to give this service class three
performance periods, because it must support all types of kernel work, from
short-interactive commands to long-running background work. You can set duration
values using the SU/sec reported in the RMF monitor I Workload Activity report.

Example 10-3 shows the classification rules for the OMVS subsystem type. The first entry
assigns the service class VEL70 to all of the processes forked by BPXOINIT that have the
user ID equal to OMVSKERN. The other forked child processes fall into the default service
class OMVSDEF, except for the listed TNs.

Example 10-3 Classification rules for OMVS subsystem work

Modify Rules for the Subsystem Type Row 1 to 6 of 6
Command ===> __ SCROLL ===> PAGE

Subsystem Type . : OMVS Fold qualifier names? Y (Y or N)
Description . . .

Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 --------Qualifier-------- -------Class--------
Action Type Name Start Service Report
 DEFAULTS: OMVSDEF ________
 ____ 1 UI OMVSKERN ___ VEL70 ________
 ____ 1 TN MIKE* ___ VEL40 ________
 ____ 1 TN MQVSBRK* ___ VEL40 ITSOFN
 ____ 1 TN ERWCTG1 ___ WAS48 ERWCTG1
 ____ 1 TN SDSR* ___ VEL70 WAS
 ____ 1 TN MQ8MBRK* ___ STCHI ________

The account information is normally inherited from the parent process of a UNIX System
Services address space. In addition, when a daemon creates a process for another user,
accounting data is taken from the WORKATTR of the RACF user profile. A user can also
assign accounting data by setting the _BPX_ACCT_DATA environment variable, or by
passing accounting information on the interface to the spawn or __spawn2 services.

The jobname for the UNIX System Services address space is used as the transaction name.
By default, fork and spawn set the jobname value to the user ID with a number (1 to 9)
appended. However, daemons or users with appropriate privileges can set the
_BPX_JOBNAME environment variable to change the jobname for forked or spawned
children. In this way, servers and daemons in UNIX System Services address spaces can
easily be assigned performance attributes other than UNIX System Services address spaces.

Note: The OMVS subsystem classification rule handles work requests processed in z/OS
UNIX System Services forked children address spaces. The goals of the originating
subsystem manage the work that comes from an enclave.
Chapter 10. UNIX System Services considerations 291

The RACF user ID associated with the address space is used as the user ID work qualifier.
This user ID is either inherited from the parent address process or assigned by a daemon
process (for example, the rlogin or telnet daemon).

OMVS and TSO/E response time
When a user goes into the shell environment using the OMVS command from TSO/E, very
long TSO/E response times (several seconds) might be recorded. This can affect those WLM
goals for TSO users that are based on response time.

Normally, a TSO/E transaction starts when a user enters a command and ends when the
command is completed. After the TSO/E command completes, a TGET WAIT is issued,
indicating that the current transaction has completed and a new transaction will start when
there is more work to be done.

In the OMVS shell environment, a transaction starts when a command is issued from the
terminal. After the command is issued, polling is done to wait for output to return from the
command. Every half second, there is a test for output and a test (TGET NOWAIT) for
terminal input. This goes on for 20 seconds before the session goes into INPUT mode and
does a TGET WAIT for terminal input only. TGET NOWAIT does not end the current
transaction unless terminal input is found. If there is no more terminal input for over 20
seconds, the transaction does not end until the TGET WAIT is issued and the session goes
into INPUT mode.

In effect, TSO/E users in the shell environment can experience response times of up to 20
seconds, often with little service consumption. Response times under 20 seconds occur only
when users immediately enter the next command.

Example 10-4 shows the result of a test where we defined a service class with percentile
response time of 20 seconds for 99% of transactions. After working under TSO, we activated
the OMVS shell with the OMVS command and issued some short commands, waiting until
the session went into Input mode. From the RMF Workload Activity report in Example 10-4,
we can see that the OMVS transactions end after about 20 seconds and fall into buckets 5
and 6.

Example 10-4 RMF Postprocessor Workload Activity report bucket data

GOAL: RESPONSE TIME 000.00.20.000 FOR 99%

 RESPONSE TIME EX PERF AVG --- USING% --- ---------- EXECUTION DELAYS % --------- ---DLY%-- -CRYPTO%- ---CNT%-- %
SYSTEM ACTUAL% VEL% INDX ADRSP CPU IFA I/O TOT CPU UNKN IDLE USG DLY USG DLY QUIE

SC69 100 66.7 0.9 0.8 0.1 N/A 0.2 0.2 0.1 0.3 99.2 0.0 0.0 0.0 0.0 0.0

 ----------RESPONSE TIME DISTRIBUTION----------
 ----TIME---- --NUMBER OF TRANSACTIONS-- -------PERCENT------- 0 10 20 30 40 50 60 70 80 90 100
 HH.MM.SS.TTT CUM TOTAL IN BUCKET CUM TOTAL IN BUCKET |....|....|....|....|....|....|....|....|....|....|
< 00.00.10.000 101 101 94.4 94.4 >>
<= 00.00.12.000 101 0 94.4 0.0 >
<= 00.00.14.000 101 0 94.4 0.0 >
<= 00.00.16.000 103 2 96.3 1.9 >>
<= 00.00.18.000 107 4 100 3.7 >>>
<= 00.00.20.000 107 0 100 0.0 >
<= 00.00.22.000 107 0 100 0.0 >
<= 00.00.24.000 107 0 100 0.0 >
<= 00.00.26.000 107 0 100 0.0 >
<= 00.00.28.000 107 0 100 0.0 >
<= 00.00.30.000 107 0 100 0.0 >
<= 00.01.20.000 107 0 100 0.0 >
> 00.01.20.000 107 0 100 0.0 >

Based on this behavior, because the wait time under OMVS is not idle time, we suggest that
you use a percentile goal that takes into account the time spent by TSO users that work
mostly under OMVS and not under TSO/ISPF, and that you set the goal accordingly.
292 System Programmer’s Guide to: Workload Manager

This is applicable only to the OMVS command and not to the sessions started by the ISHELL
command.

10.2.2 Control using UNIX functions
In a UNIX environment, there are some callable services that allow you to control the
dispatching priority of a process, a process group, or a user. These services are setpriority(),
chpriority(), and nice(). These services are also available in z/OS UNIX System Services and
have an interface to WLM to provide the system control and monitoring support to which
customers are accustomed.

To enable the nice(), setpriority(), and chpriority() functions, you have to use the
PRIORITYGOAL statement in the BPXPRMxx parmlib member, and you must add additional
service classes for kernel work. PRIORITYGOAL specifies a list of service class names that
are used with the nice(), setpriority(), and chpriority() callable services when the system is
running in goal mode.

10.3 Reporting
You can collect OMVS data from multiple sources: SDSF, RMF III, RMF Postprocessor, and
non-IBM monitors.

In this section, we discuss how to use several of these reports.

SDSF Processes panel
From the SDSF Main menu, select PS to display the panel. See Example 10-5.

Example 10-5 SDSF Process Display

SDSF PROCESS DISPLAY SC69 ALL LINE 20-38 (39)
COMMAND INPUT ===> SCROLL ===> CSR
PREFIX=* DEST=(ALL) OWNER=* SYSNAME=SC69
NP JOBNAME Status State CPU-Time PID PPID ASIDX Command
 NFSCLNT MSGQ RECEIVE WAIT 1A 3.96 131110 1 0036 GFSCRPCD
 NFSCLNT MSGQ RECEIVE WAIT 1A 3.96 131111 1 0036 GFSCRPCD
 NFSCLNT MSGQ RECEIVE WAIT 1A 3.96 131112 1 0036 GFSCRPCD
 NFSCLNT MSGQ RECEIVE WAIT 1A 3.96 131113 1 0036 GFSCRPCD
 NFSCLNT MSGQ RECEIVE WAIT 1A 3.96 131114 1 0036 GFSCRPCD
 NFSCLNT MSGQ RECEIVE WAIT 1A 3.96 131115 1 0036 GFSCRPCD
 GIAN SWAPPED,RUNNING 1RI 5.18 131733 1 0075 EXEC
 NFSCLNT RUNNING 1R 3.96 16908292 1 0036 BPXVCLNY
 NFSCLNT RUNNING 1R 3.96 16908308 1 0036 GFSCMAIN
 EWLMMS2 RUNNING HR 2237.35 16908408 50462838 0028 /usr/lpp/
 RMFGAT RUNNING 1R 15612.82 33685507 1 004B ERB3GMFC
 CRON1 SWAPPED,OTHER KERNEL WAIT 1KI 0.90 33685512 1 0058 /usr/sbin
 PMAP SWAPPED,FILE SYS KERNEL WAIT 1FI 0.73 33685533 1 004F PORTMAP
 NFSMVS OTHER KERNEL WAIT MK 6.38 50462727 1 004D GFSAMAIN
 NFSCLNT MSGQ RECEIVE WAIT 1A 3.96 50462732 1 0036 BPXVCMT
 EWLMMS4 SWAPPED,WAITING FOR CHILD 1WI 0.49 50462838 67240053 001C /bin/sh
 DFSKERN MVS PAUSE WAIT HG 61.23 67239941 84017166 005B DFSKERN
 DB8EDIST FILE SYS KERNEL WAIT MF 138.15 67239968 1 0074 DSNVEUS3
 EWLMMS SWAPPED,WAITING FOR CHILD 1WI 0.49 67240053 1 0037 -sh -c

Important: We do not recommend that you enable nice(), setpriority(), and chpriority()
support. Instead, we recommend the exclusive use of normal WLM controls.
Chapter 10. UNIX System Services considerations 293

Here you can see, for each process, information such as the process ID (PID), the parent
process ID (PPID), the actual status of the process, the command that created the process,
and so forth. The SDSF action character D displays additional information for the selected
entry.

RMF III OPD
The RMF III OPD panel shows almost the same information as the SDSF PS panel. RMF III
also gives you the ability to display historical data by pressing PF10 (backward reference)
and PF11 (forward reference).

Example 10-6 RMF III: OMVS Process Data

RMF V1R5 OMVS Process Data Line 1 of 39
Command ===> Scroll ===> CSR

Samples: 98 System: SC69 Date: 04/13/05 Time: 15.31.40 Range: 100 Sec

Kernel Procedure: OMVS Kernel ASID: 0014 Option: PID ALL
BPXPRM: OMVS=(6A)

Jobname User ASID PID PPID LW State Appl% Total Server

BPXOINIT OMVSKERN 0086 1 0 MRI 0.0 19.43 FILE
DFS DFS 0076 131074 1 HG 0.0 1.108 N/A
TCPIP TCPIPOE 0069 131083 1 MR 0.5 3049 N/A
SYSLOGD5 OMVSKERN 0090 131085 1 1F 0.0 12.02 N/A
INETD1 OMVSKERN 0089 131087 1 1FI 0.0 0.666 N/A
TCPIP TCPIPOE 0069 131088 1 1R 0.5 3049 N/A

Cursor sensitivity applies to the following fields:

� Jobname: The JOB report is invoked.

� Parent PID: Report is invoked again with the parent process shown on top of the window.

� Elsewhere on the process line: RMF OMVS Process Data - Details pop-up panel.
Example 10-7 is an example of RMF OMVS Process Data - Details.

Example 10-7 RMF III OMVS Process Data - Details panel

RMF OMVS Process Data - Details

 Press Enter to return to the Report panel.

 Start Time/Date : 16.19.52 04/04/2005
 Command : /usr/lpp/java/J1.4/bin/java
 Process-ID : 16908408 Parent Process-ID : 50462838
 Jobname : EWLMMS2 User : EWLMMS
 ASID : 0040 Hexadecimal ASID : 0028

 Appl% : 0.4 Total CT : 2242 LW-PID : 0

 Server Information:
 Name : N/A
 Type : N/A Active Files : N/A Max. Files : N/A

 Process State : HR
 H: Multiple threads, pthread_create used
 R: Running
294 System Programmer’s Guide to: Workload Manager

RMF Postprocessor
The RMF Kernel Activity report is generated using the SYSIN statement REPORT(OMVS).

The report is helpful for monitoring OMVS activities and configuration parameters.

In the SYSTEM CALL Activity section, you can obtain the number of system calls per second
and the CPU time spent to process system calls. See Example 10-8.

Example 10-8 RMF Postprocessor OMVS System Call Activity data

 OMVS SYSTEM CALL ACTIVITY
--
 MINIMUM AVERAGE MAXIMUM
--
 SYSCALLS (N/S) 0.000 173.5 197K
 CPU TIME (H/S) 0.000 0.208 237.0

In the OMVS process Activity section (Example 10-9), the first row (MAXIMUM) shows the
active values for:

� PROCESSES = MAXPROCSYS parameter
� USERS = MAXUIDS parameter
� PROCESSES PER USERS = MAXPROCUSER parameter

For each parameter, RMF shows you the CURRENT and OVERRUNS values:

� CURRENT: You need to monitor the AVERAGE values to determine if you set this
parameter too high.

� OVERRUNS: Helps you to determine if you are experiencing slowdowns due to a value
that is set too low.

Example 10-9 RMF postprocessor OMVS activity data

OMVS PROCESS ACTIVITY

 PROCESSES USERS PROCESSES PER USERS
 MAXIMUM (TOT) 4096 200 32767

 MINIMUM AVERAGE MAXIMUM MINIMUM AVERAGE MAXIMUM MINIMUM AVERAGE MAXIMUM

 CURRENT (TOT) 38 43.79 53 1 1.734 3
 OVERRUNS (N/S) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Chapter 10. UNIX System Services considerations 295

296 System Programmer’s Guide to: Workload Manager

Chapter 11. Transactional workload
considerations

This chapter provides guidelines to properly manage your overall CICS transactional
workload environment.

This chapter offers you hints and tips to efficiently classify your CICS transactions and
regions, and also explains how to set a report class to have detailed transaction information
even when CICS is managed toward a region goal. This chapter explains and analyzes a
CICS/batch CPU contention test.

11
© Copyright IBM Corp. 2005, 2006, 2007. All rights reserved. 297

11.1 General considerations for CICS
CICS has led the way in the implementation of new technology to support the transaction
processing of your mission-critical business applications. This is just one reason why CICS is
the leader in large-scale transaction processing today and is probably one of the reasons why
you originally chose CICS as your transaction manager.

CICS evolved even further into an e-Business application server, providing improved
application enabling capabilities as well as powerful Web and Java support.

So, properly defining CICS to WLM is key to guaranteeing the business quality of service of
the IT infrastructure. This chapter provides information to set these definitions.

11.2 Types of goals
In this section, we describe the two types of management that you can use for CICS:

� Managing CICS toward a region goal

The goal is set to a service class that manages the CICS address spaces: You can only
use an execution velocity goal for this service class. This service class is assigned
depending on the startup subsystem (JES or STC). In this case, we do not use the CICS
subsystem classification rules.

� Managing CICS toward a transaction response time goal

The goal can be average response time with or without percentile, and this is set to a
service class assigned to a single transaction or a group of transactions. In this case, we
use the JES or STC classification rules for the address spaces and the CICS subsystem
classification rules for transaction.

You can dynamically switch from one mode to the other by changing the “Manage Region
Using Goals of” field in the JES or STC subsystem classification rules panel. This can be
done at the address space name level.

For example, you can use a transaction named TRX1 in a production or in a test
environment. This transaction is classified in the CICS subsystem classification rules. If it is
executed in the production environment, we want to use a response time goal (transaction
management). However, if it is executed in the test environment, we want to use a velocity
goal. This is because, in the test environment, we are managing the CICS region toward a
region goal instead of a response time goal, which is considered inappropriate, because
either the amount of transactions is not large enough or the response time is not suitable
when using development tools.

If there are too many service classes for CICS or IMS with response time goals, the
management of these transactions can become a little unpredictable, because WLM
manages the regions based on the mix of transactions that runs in these regions. If this mix is
too diverse or even if there are just a few service classes with response time goals but some
of them with low activity, the mix can end in unpredictable results from a management point of
view. This is one of the reasons why you might want to consider whether the response time
goals for CICS and IMS are the best choice for your installation. Execution velocity goals
might have their downsides, but they are much easier to correlate to what is running on the
system.

WLM does not directly control each classified transaction, only the regions for the resources
managed, such as CPU, processor storage I/O priority, and alias. Too much granularity for
transaction service classes can be counterproductive. You usually obtain the best results
298 System Programmer’s Guide to: Workload Manager

when similar response time transactions are mapped to certain regions, but in the same
installation, this might hard to achieve.

11.2.1 Region management goal
A single service class is needed to set up this management. This service class is assigned at
the address space level in the JES or STC classification rules. See Example 11-1.

Example 11-1 Address space classification rule for region management

Modify Rules for the Subsystem Type Row 1 to 16 of 77
Command ===> __ SCROLL ===> PAGE

Subsystem Type . : STC Fold qualifier names? Y (Y or N)
Description . . . ________________________________

Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 --------Qualifier-------- -------Class--------Manage Region
Action Type Name Start Service ReportUsing Goals Of

DEFAULTS: SYSSTC OTHER
____ 1 TN SCSCP* ___ ITSOCIRG ________REGION

Example 11-1 shows that all address spaces beginning with SCSCP have service class
ITSOCIRG assigned. Notice that REGION is specified in the “Manage Region Using Goal of”
field.

Service class ITSOCIRG is defined in Example 11-2.

Example 11-2 Service class definition for region management

Modify a Service Class Row 1 to 2 of 2
Command ===> __

Service Class Name : ITSOCIRG
Description CICS regions
Workload Name CICS (name or ?)
Base Resource Group ________ (name or ?)
Cpu Critical NO (YES or NO)

Specify BASE GOAL information. Action Codes: I=Insert new period,
E=Edit period, D=Delete period.

 ---Period--- ---------------------Goal---------------------
Action # Duration Imp. Description
 __
 __ 1 2 Execution velocity of 70

Velocity is the goal for this service class.

CPU and storage-critical assignment in region management mode
If used, CPU critical has to be assigned at the service class level.

Long-term storage protection is assigned by specifying YES in the Storage Critical field in the
rules for the address space.
Chapter 11. Transactional workload considerations 299

Service class reporting in region management mode
In Example 11-3, we can see:

� The number of address spaces in this service class in the TRANSACTION column

� DASD I/O information

� CPU consumption in the field APPL% (expressed in percentage of a single engine
utilization)

� Real storage used

� Service class samples, states, percentages, and performance index

Example 11-3 RMF SCPER report for ITSOCIRG service class

REPORT BY: POLICY=SPSTPC WORKLOAD=CICS SERVICE CLASS=ITSOCIRG RESOURCE GROUP=*NONE PERIOD=1 IMPORTANCE=2
 CRITICAL =NONE

 TRANSACTIONS TRANS.-TIME HHH.MM.SS.TTT --DASD I/O-- ---SERVICE---- --SERVICE TIMES-- PAGE-IN RATES ----STORAGE----
 AVG 6.00 ACTUAL 0 SSCHRT 557.6 IOC 285185 TCB 191.6 SINGLE 0.0 AVG 10814.8
 MPL 6.00 EXECUTION 0 RESP 4.8 CPU 2204K SRB 54.5 BLOCK 0.0 TOTAL 64888.2
 ENDED 0 QUEUED 0 CONN 1.7 MSO 0 RCT 0.0 SHARED 0.0 CENTRAL 64888.2
 END/S 0.00 R/S AFFINITY 0 DISC 0.1 SRB 626491 IIT 2.1 HSP 0.0 EXPAND 0.00
 #SWAPS 0 INELIGIBLE 0 Q+PEND 0.3 TOT 3115K HST 0.0 HSP MISS 0.0
 EXCTD 0 CONVERSION 0 IOSQ 2.7 /SEC 10384 IFA N/A EXP SNGL 0.0 SHARED 62.00
 AVG ENC 0.00 STD DEV 0 APPL% CP 82.7 EXP BLK 0.0
 REM ENC 0.00 ABSRPTN 1731 APPL% IFACP 0.0 EXP SHR 0.0
 MS ENC 0.00 TRX SERV 1731 APPL% IFA N/A

 GOAL: EXECUTION VELOCITY 70.0% VELOCITY MIGRATION: I/O MGMT 46.3% INIT MGMT 46.3%

 RESPONSE TIME EX PERF AVG --- USING% --- ---------- EXECUTION DELAYS % --------- ---DLY%-- -CRYPTO%- ---CNT%-- %
 SYSTEM VEL% INDX ADRSP CPU IFA I/O TOT I/O CPU UNKN IDLE USG DLY USG DLY QUIE

 SC66 --N/A-- 46.3 1.5 6.0 12.6 N/A 12.5 29.2 22.0 7.2 0.0 45.7 0.0 0.0 0.0 0.0 0.0

In this report, there is no data showing the number of executed transactions and no data
about the response time. The ENDED and ACTUAL fields are related to the CICS regions and
report when an address space has stopped during the interval.

To obtain transaction-related information, even if you are in region management, refer to
11.5.1, “Reporting enhancement” on page 307.

11.2.2 Transaction response time management
There are two types of classification that are required for this management: address space
classification in transaction management mode and transaction classification in transaction
management model.

Address space classification in transaction management mode
You always need to classify the address spaces through the STC or JES subsystem
classification rules. You only use the assigned service class goal during initialization and
termination of the address space. The assigned service class goal is also used when there is
no transaction during one minute. Be careful when assigning the velocity and importance goal
value. Refer to Example 11-2 on page 299 to see how to assign a service class to a region.

Transaction classification in transaction management mode
Another set of service classes is necessary to assign response time goals to the transactions.
Goals can only be average response times with or without percentile, and a service class
must have only one period.
300 System Programmer’s Guide to: Workload Manager

Other goals are not allowed:

� Velocity goals are not allowed because WLM does not know what happens at a
transaction level inside the CICS region, but only knows resource usage for the CICS
region itself. So, WLM does not know what each transaction is using or for what resource
it is delayed.

� Multiple periods are unsupported for transactions in the CICS subsystem environments,
because service units are accumulated for the address space, not for the individual
transactions. Therefore, WLM cannot track a duration for those transactions.

See Example 11-4.

Example 11-4 Service class definition for response time

Modify a Service Class Row 1 to 2 of 2
Command ===> __

Service Class Name : ITSOCI02
Description ________________________________
Workload Name CICS (name or ?)
Base Resource Group ________ (name or ?)
Cpu Critical NO (YES or NO)

Specify BASE GOAL information. Action Codes: I=Insert new period,
E=Edit period, D=Delete period.

 ---Period--- ---------------------Goal---------------------
Action # Duration Imp. Description
 __
 __ 1 2 80% complete within 00:00:00.025

Example 11-4 shows the definition of the ITSOCI02 service class. An average response time
of 0.025 seconds is expected for 80% of the transactions and the goal has an Importance of
2.

CICS subsystem classification rules are used to assign service classes to a transaction or a
group of transactions.

See Example 11-5.

Example 11-5 Transaction classification for response time management

Modify Rules for the Subsystem Type Row 1 to 15 of 15
Command ===> __ SCROLL ===> PAGE

Subsystem Type . : CICS Fold qualifier names? Y (Y or N)
Description . . .

Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 --------Qualifier-------- -------Class--------
Action Type Name Start Service Report
 DEFAULTS: CICSDFLT OTHER
 ____ 1 SI SCSCP* ___ ITSOCI01 ________
 ____ 2 TN DB2U ___ ITSOCI01 RCDB2U
 ____ 2 TN DB2N ___ ITSOCI01 RCDB2N
 ____ 2 TN DB2R ___ ITSOCI01 RCDB2R
 ____ 2 TN %X% ___ ITSOCI02 RCVSAM
 ____ 2 TN * ___ ITSOCI01 RCICOTH
Chapter 11. Transactional workload considerations 301

Example 11-5 on page 301 shows how to assign ITSOCI01 to DB2U, DB2N, and DB2R
transactions. The ITSOCI02 service class is assigned to all three character transactions
having an X as the second character.

You can create service classes for groups of transactions with similar performance goals and
business importance. Do not mix together the following types of transactions in the same
service class or CICS regions, where possible:

� CICS-supplied transactions with user transactions.

� Routed with non-routed transactions.

� Conversational with pseudo-conversational transactions.

� Long-running and short-running transactions.

� Transactions with very different characteristics. For example, if you have two transactions
that both have an average response time of one second, but one is CPU-intensive while
the other is I/O-intensive, you should put them into different service classes.

� Transactions with very different response times. For example, do not put a transaction with
an average response time of 20 seconds into the same service class as a transaction with
an average response time of 0.5 seconds.

� Transactions with different levels of business importance.

The CICS address space receives resources and has a dispatching priority. A CICS
transaction runs with the resources and dispatching priority of the CICS region. So, we
recommend that you have more Application Owning Regions (AORs) than service classes on
each z/OS image to make workload management via WLM easier. This decreases the
chance of transactions with different goals executing in the same address space. If it
happens, the transactions with less aggressive goals get a “free ride,” while WLM tries to
honor the more aggressive and more important goals.

CPU and storage-critical assignment in transaction management mode
If you use CPU critical, you must assign it at the service class level. If any of the transactions
executed in an address space have this attribute, then this address space will inherit this CPU
protection.

Long-term storage protection is assigned by specifying YES in the Storage Critical field in the
classification rules for specific transactions. After you specify YES for one transaction in a
CICS service class, then all address spaces where this transaction executes are
storage-protected. A preferred alternative is to assign storage protection to the region in
which the transactions run. This ensures the region will be protected even when WLM loses
sampling control (no activity).

To perform this setup, you need to modify the STC or JES classification rule.
302 System Programmer’s Guide to: Workload Manager

11.3 Classification rules
The work qualifiers that CICS can use (and which identify CICS work requests to workload
manager) are:

� LU: LU name
� LUG: LU name group
� SI: Subsystem instance (VTAM applid)
� SIG: Subsystem instance group
� TN: Transaction identifier
� TNG: Transaction identifier group
� UI: User ID
� UIG: User ID group

11.4 CPU contention considerations
In this topic, we want to analyze the behavior of the CICS management modes in a
CPU-constrained environment. The target system for our scenarios has two dedicated
engines on a z900.

We are using TPNS to generate a constant transaction flow against our CICS subsystem
while a variable amount of CPU bound batch jobs execute.

At the beginning of the test, CICS address spaces are the only workload running in the
system. Then, one to four CPU bound jobs are started. Batch jobs are running in a service
class with an execution velocity goal of 15% and an Importance of 5.

This scenario is executed in both CICS management modes (region and transaction). In the
region management mode, CICS regions run in a service class with an execution velocity
goal of 70% and an Importance of 2. In transaction management mode, CICS regions run in
the same service class as the CICS regions, and the transactions are classified in
Example 11-6 on page 304.

Note: Consider defining workloads for terminal-owning regions (TORs) only. Work
requests do not normally originate in an application-owning region. The transactions are
normally routed to an application-owning region from a terminal-owning region, and the
work request is classified in the terminal-owning region. In this case, the work is not
reclassified in the application-owning region. If work originates in the application-owning
region, then it is classified in the application-owning region; normally, there would be no
terminal.

You can use identifier group qualifiers to specify the name of a group of qualifiers; for
example, GRPACICS could specify a group of CICS transaction identifiers (transids),
which you can specify on classification rules by TNG GRPACICS. This is a useful
alternative to specifying classification rules for each transaction separately.
Chapter 11. Transactional workload considerations 303

Example 11-6 Classification rules for transactions

Modify Rules for the Subsystem Type Row 1 to 15 of 15
Command ===> __ SCROLL ===> PAGE

Subsystem Type . : CICS Fold qualifier names? Y (Y or N)
Description . . . CICS SERVER

Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 --------Qualifier-------- -------Class--------
Action Type Name Start Service Report
 DEFAULTS: CICSDFLT OTHER
 ____ 1 SI SCSCP* ___ ITSOCI01 ________
 ____ 2 TN DB2U ___ ITSOCI01 RCDB2U
 ____ 2 TN DB2N ___ ITSOCI01 RCDB2N
 ____ 2 TN DB2R ___ ITSOCI01 RCDB2R
 ____ 2 TN %X% ___ ITSOCI02 RCVSAM
 ____ 2 TN * ___ ITSOCI01 RCICOTH

Example 11-6 shows the classification used for the scenario. The first level relates to the
generic applid. The same service class, ITSOCI01, is assigned to all transactions, except the
VSAM transactions that run in ITSOCI02 service class. Different report classes are assigned
to the transactions.

We defined the ITSOCI01 service class with an average response time with percentile goal of
95% with a response time of 0.015 seconds and an Importance of 2. ITSOCI02 service class
has an average response time with percentile goal of 85% with a response time of 0.025
seconds and an Importance of 2.

For both tests, we collect the following data from RMF reports:

� Velocity, CPU delay, and APPL% of the CPU bound jobs
� Velocity, CPU delay, and APPL% of the CICS region
� Response time of transactions

11.4.1 CICS and batch jobs contention analysis
The CICS transaction flow is constant. The number (or amount) of batch jobs varies from zero
to four.

The Importance of the CICS goal is 2, while the Importance of the batch goal is 5.

Figure 11-1 on page 305 shows the velocity, CPU delays, and APPL% variation depending on
the amount of batch jobs running.
304 System Programmer’s Guide to: Workload Manager

Figure 11-1 Jobs batch velocity, CPU delays, and APPL%

The X-axis in Figure 11-1 shows the amount of batch jobs varying from zero to four and,
within this number, the management mode of CICS:

� REG for region management
� TRN for transaction management

Comparisons should be done within the same interval for batch jobs and CICS regions.
Chapter 11. Transactional workload considerations 305

Execution velocity percentage obviously decreases as the number of batch increases
because the number of engines is the same and there is more batch demand. The MVS busy
percentage was 58% without the batch job, then 69% with one job, 86% with two jobs, and
100% with three and four jobs.

The increase of batch CPU delays is linear. The APPL% reached is 82% of one engine after
the second job was started.

11.4.2 CICS regions contention analysis
Figure 11-2 shows the velocity, CPU delays, and APPL% variation of the CICS address
spaces.

Figure 11-2 CICS regions’ velocity, CPU delays, and APPL%

0 .0 0 %

1 0 .0 0 %

2 0 .0 0 %

3 0 .0 0 %

4 0 .0 0 %

5 0 .0 0 %

6 0 .0 0 %

7 0 .0 0 %

8 0 .0 0 %

9 0 .0 0 %

1 0 0 .0 0 %

R E G T R N R E G T R N R E G T R N R E G T R N R E G T R N

0 0 1 1 2 2 3 3 4 4

R E G V E L R E G C P U D E L A Y R E G A P P L %
306 System Programmer’s Guide to: Workload Manager

Figure 11-2 on page 306 shows an extremely slight increase of CPU delays due to the batch
contention and a very small variation for the velocity. APPL% is steady. We can derive that, in
both modes, batch jobs have no influence on the CICS throughput. You can verify this
because the bars of the first interval (zero batch job) are nearly the same as the bars of the
fifth interval with four jobs.

11.4.3 CICS response time contention analysis
We have shown that the batch jobs’ CPU consumption has not affected the CICS region
throughput. This section analyses whether there is an impact on CICS transactions’ response
time. See Figure 11-3.

Figure 11-3 Transactions’ response time

Figure 11-3 shows the transactions’ response time achieved during the test. From zero to four
jobs running concurrently with CICS, we notice that response times have a very small
increase for each management mode (region and transaction). This increase is slightly higher
in region mode.

11.4.4 Contention analysis summary
The test shows that whatever the CICS goal management is, the WLM importance has
properly protected the CICS environment.

If the batch workload has a different focus concerning data access (not the same DASD, not
the same databases to prevent locks), CICS and batch can run at the same time when the
WLM classifications are properly set.

11.5 Reporting
In a CICS/IMS environment, it is efficient and appropriate from a tuning and management
point of view to have reporting information at the transaction level. Now, we explain how to
get appropriate tuning and management even when CICS is managed toward a region goal.

11.5.1 Reporting enhancement
In this section, we describe the reporting enhancement that allows us to get a transaction
detail report even if CICS is region-managed.
Chapter 11. Transactional workload considerations 307

Our environment was made up of two TORs and four AORs that are executing a mix of
VSAM-RLS and DB2 transactions generated by TPNS.

Service definition used for this test
For the six regions, we defined a service class ITSOCIRG with an execution velocity of 70%
and an Importance of 2. This goal is assigned when we start the six STCs. See
Example 11-7.

Example 11-7 Service class definition for region management

Modify a Service Class Row 1 to 2 of 2
Command ===> __

Service Class Name : ITSOCIRG
Description CICS regions
Workload Name CICS (name or ?)
Base Resource Group ________ (name or ?)
Cpu Critical NO (YES or NO)

Specify BASE GOAL information. Action Codes: I=Insert new period,
E=Edit period, D=Delete period.

 ---Period--- ---------------------Goal---------------------
Action # Duration Imp. Description
 __
 __ 1 2 Execution velocity of 70

To assign this service class to the regions, we used the following parameters in the STC
subsystem classification rules. See Example 11-8.

Example 11-8 STC classification rules

Modify Rules for the Subsystem Type Row 1 to 16 of 77
Command ===> __ SCROLL ===> PAGE

Subsystem Type . : STC Fold qualifier names? Y (Y or N)
Description . . . ________________________________

Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 --------Qualifier-------- -------Class--------Manage Region
Action Type Name Start Service ReportUsing Goals Of

DEFAULTS: SYSSTC OTHER
____ 1 TN SCSCP* ___ ITSOCIRG ________REGION

Example 11-8 shows the assignment of the service class ITSOCIRG: All our CICS regions
are started tasks and their names begin with SCSCP. The “Manage Region Using Goals Of”
field is obtained by pressing PF11 key two times.

Even if we specify region management, we define a response time goal service class for the
transactions that are executed by these regions.

See Example 11-9 on page 309.
308 System Programmer’s Guide to: Workload Manager

Example 11-9 Response time goal service class

Modify a Service Class Row 1 to 2 of 2
Command ===> __

Service Class Name : ITSOCI01
Description ________________________________
Workload Name CICS (name or ?)
Base Resource Group ________ (name or ?)
Cpu Critical NO (YES or NO)

Specify BASE GOAL information. Action Codes: I=Insert new period,
E=Edit period, D=Delete period.

 ---Period--- ---------------------Goal---------------------
Action # Duration Imp. Description
 __
 __ 1 2 95% complete within 00:00:00.015

Example 11-9 shows the ITSOCI01 service class that we assign to the transactions executed
in the CICS regions through the CICS subsystem classification rules. In this case only, the
defined goal has no effect on WLM management, because we have specified region
management in the address space classification rule.

See Example 11-10.

Example 11-10 CICS subsystem classification rules

Modify Rules for the Subsystem Type Row 1 to 14 of 14
Command ===> __ SCROLL ===> PAGE

Subsystem Type . : CICS Fold qualifier names? Y (Y or N)
Description . . . CICS SERVER

Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 --------Qualifier-------- -------Class--------
Action Type Name Start Service Report
 DEFAULTS: CICSDFLT OTHER
 ____ 1 SI SCSCP* ___ ITSOCI01 RCCICALL

Example 11-10 shows the classification assigned to our CICS system. The SI type qualifier is
the CICS VTAM APPLID of our regions. We assigned a report class, RCCICALL, at the
APPLID level, that receives the expected transaction level performance information.
However, this simple setting produces the same detailed transaction activity report as if we
were in response time management.

Example 11-11 on page 310 shows the RMF report of the RCCICALL report class. We have
all of the expected information at the transactions level.
Chapter 11. Transactional workload considerations 309

Example 11-11 Transaction activity report in region mode management

REPORT BY: POLICY=SPSTPC REPORT CLASS=RCCICALL PERIOD=1
 HOMOGENEOUS: GOAL DERIVED FROM SERVICE CLASS ITSOCI01

 TRANSACTIONS TRANS.-TIME HHH.MM.SS.TTT
 AVG 0.00 ACTUAL 10
 MPL 0.00 EXECUTION 7
 ENDED 43277 QUEUED 0
 END/S 144.26 R/S AFFINITY 0
 #SWAPS 0 INELIGIBLE 0
 EXCTD 40722 CONVERSION 0
 AVG ENC 0.00 STD DEV 25
 REM ENC 0.00
 MS ENC 0.00

 RESP -------------------------------- STATE SAMPLES BREAKDOWN (%) ------------------------------- ------STATE------
 SUB P TIME --ACTIVE-- READY IDLE -----------------------------WAITING FOR----------------------------- SWITCHED SAMPL(%)
 TYPE (%) SUB APPL CONV I/O LOCK MISC LOCAL SYSPL REMOT
 CICS BTE 67.0 10.3 0.0 1.7 0.0 87.9 0.0 0.0 0.0 88.8 0.0 0.0
 CICS EXE 21.4 73.0 0.0 13.5 5.4 0.0 5.4 0.0 2.7 2.7 0.0 0.0
 DB2 BTE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 DB2 EXE 0.6 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 SMS BTE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 SMS EXE 24.8 25.6 0.0 0.0 0.0 0.0 65.1 9.3 0.0 0.0 0.0 0.0

 GOAL: RESPONSE TIME 000.00.00.015 FOR 95%

 RESPONSE TIME EX PERF
 SYSTEM ACTUAL% VEL% INDX

 SC66 84.6 N/A 4.0

 ----------RESPONSE TIME DISTRIBUTION----------
 ----TIME---- --NUMBER OF TRANSACTIONS-- -------PERCENT------- 0 10 20 30 40 50 60 70 80 90 100
 HH.MM.SS.TTT CUM TOTAL IN BUCKET CUM TOTAL IN BUCKET |....|....|....|....|....|....|....|....|....|....|
 < 00.00.00.007 29961 29961 69.2 69.2 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
 <= 00.00.00.009 31523 1562 72.8 3.6 >>>
 <= 00.00.00.010 32786 1263 75.8 2.9 >>
 <= 00.00.00.012 34671 1885 80.1 4.4 >>>
 <= 00.00.00.013 35386 715 81.8 1.7 >>
 <= 00.00.00.015 36609 1223 84.6 2.8 >>
 <= 00.00.00.016 37127 518 85.8 1.2 >
 <= 00.00.00.018 37606 479 86.9 1.1 >
 <= 00.00.00.019 38319 713 88.5 1.6 >>
 <= 00.00.00.021 38611 292 89.2 0.7 >
 <= 00.00.00.022 39072 461 90.3 1.1 >
 <= 00.00.00.030 40128 1056 92.7 2.4 >>
 <= 00.00.00.060 41634 1506 96.2 3.5 >>
 > 00.00.00.060 43277 1643 100 3.8 >>>

This setting is useful when you do not want to or cannot manage your CICS at the transaction
level, but still want detailed transaction level information.

This report can help you analyze your transaction response time and make a decision
whether to migrate to transaction response time management. This can be useful when your
CICS transactions are developed with certain fourth-generation languages where there is a
single transaction name that manages the CICS context.
310 System Programmer’s Guide to: Workload Manager

Chapter 12. Uniprocessor considerations

As CPU speeds increase, many sites are moving to systems that are larger, but actually have
fewer CPUs. This can cause difficulties, because as the number of CPUs decreases, the
system becomes more sensitive to CPU intensive tasks. The extreme example is a single
CPU system.

In this chapter, we investigate the way Workload Manager (WLM) manages access to the
CPU, and we examine the implications for a single CPU system with our best practices
recommendations.

12
© Copyright IBM Corp. 2005, 2006, 2007. All rights reserved. 311

12.1 CPU contention in a uniprocessor system
CPU contention is more of a problem on a single CPU system than on multiple CPU systems,
because all lower priority tasks wait when any higher priority CPU bound task is running. You
do not have any other CPUs that can handle other work.

Most work that runs on the system is relatively easily managed. It uses a small amount of
CPU and then waits for something. This can be an I/O, a response from the user, or a number
of other events. When it waits, the CPU is free for use by other tasks.

Some work, however, uses lots of CPU and rarely needs to wait for anything. This might be a
job that performs complex calculations, with most or all of its data in memory. These tasks are
referred to as CPU bound. Sometimes, tuning can actually produce these effects. A common
tuning technique is to use buffers to eliminate I/O. By eliminating I/O, you eliminate one
common reason for a task to wait and free the CPU.

On a two CPU system, it takes two simultaneous CPU bound tasks to force lower priority work
to wait. With more CPUs, it takes even more simultaneous CPU bound tasks to force lower
priority work to wait. With a single CPU, a single task can monopolize the whole system by
itself, which means that CPU contention can become a problem even at low average
utilizations on a single CPU system.

Upgrading to a faster CPU without increasing the number of CPUs is often not much help. A
50% faster processor might mean your online regions only hang for two minutes instead of
three minutes, an improvement perhaps, but still an issue. We need to address the way to
handle this configuration.

12.1.1 Dispatching priorities
The key to who gets to use the CPU is the dispatching priority. The dispatching priority is set
by WLM to attempt to meet the goals of the workload.

Normally, you do not need to worry about dispatching priorities in a WLM system. Set the
goals appropriately, and let WLM manage the priorities. However, when you have CPU
contention problems in a single CPU system, it helps to understand the dispatching priorities
to work out what is happening. The way that WLM manages dispatching priorities works best
with a large pool of work that is served by many CPUs. When you only have a single CPU, it
does not always work so well.

While there are many possible dispatching priorities, the actual numbers are irrelevant. When
tasks are competing for the CPU, what matters is which task has the higher priority. The task
with the higher priority will be able to use as much CPU as it likes before the lower priority
task gets a share (ignoring capping, which only happens in specific circumstances). The
lower priority task has to wait until the higher priority task voluntarily gives up the CPU.

For two tasks, A and B, there are only three possible dispatching priority arrangements:

� DP(A) > DP(B)

B waits for A to release the CPU.

� DP(A) = DP(B)

A and B share the CPU. If they both try to use it 100% of the time, they will receive
approximately equal amounts of the CPU.

� DB(A) < DP(B)

A waits for B to release the CPU.
312 System Programmer’s Guide to: Workload Manager

We performed tests to measure how much service is received in different service classes
running CPU bound work on a single CPU system. This allows us to see the effect of the
WLM dispatching priority changes when different service classes are competing for the CPU,
and the effect of different goals.

12.1.2 Test case
We created a simple REXX program that is designed to loop and consume CPU. The
program reports every five seconds how many times it runs through the loop as a measure of
how much service it received in that interval. The five second interval allows us to see what is
happening within a single WLM adjustment interval.

Example 12-1 REXX program used for testing

/* rexx */

starttime = time(s)
lastinterval = starttime
loopcount = 0
intervaltime = 5
do forever
 if time(s) > lastinterval + intervaltime then
 do
 lastinterval = lastinterval + intervaltime
 outinterval = lastinterval - starttime
 say lastinterval outinterval loopcount
 loopcount = 0
 end
 else /* start another loop if we have caught up missed intervals */
 do
 loopcount = loopcount + 1
 x = 0
 do 33250 /* Adjust so that output is approx. the same as velocity */
 x = x + 1
 end
 end
end

We adjusted the loop so that the numbers reported by the job correspond approximately to
the reported velocity; which meant it was simple to compare the service received with velocity
goals.

We then submitted two jobs in each of three service classes, so that we could see how WLM
handles the contention for the CPU. Because we had two jobs running in each service class,
the highest expected velocity is close to 50% on a system with no other significant work. We
ran two jobs in each service class so the velocities with which we were working would be
lower. For some of the tests, we wanted goals of 30 or less in order to allow the service class
to be capped.

The REXX exec recorded the time it started, so that if it received no service in an interval it
would know that it was missed, and could write out 0 for that interval when it did receive
service again. Initially, we found that some of the jobs did not receive enough service to even
record the start time reliably, so we added a short, high importance first period to each of the
service classes to get them started.

We only used batch jobs for these tests, but the principles apply equally well to other types of
CPU bound work using similar goals.
Chapter 12. Uniprocessor considerations 313

We had two objectives with these tests:

� Run CPU bound work in three service classes and have all of them meet their goals.

� Ensure each service class receives at least some service. This avoids problems that can
occur if a job is not dispatched at all. For example, a job needs to be dispatched to
respond to the cancel command.

These tests might seem unlike real workloads, but they are designed to demonstrate the
WLM response to CPU contention and the effects of changing dispatching priority. Most sites
have some CPU bound programs. They might only run for a few minutes at a time, but while
they run, you can see some of these effects on a single processor system.

Test one: Very high goals
The WLM goals for this test are shown in Table 12-1.

Table 12-1 Goals for test one

Figure 12-1 shows the result of this test. Service class BATCHHI used all available CPU for
most of the time. We can see that WLM briefly tried setting the dispatching priority for
BATCHMED the same as BATCHHI, but the impact on BATCHHI was too severe, so the
change was reversed. During this brief period, BATCHMED and BATCHHI received the same
amount of service.

BATCHLOW received no service at all, and BATCHMED received no service for most of the
test.

Figure 12-1 The result of very high goals

Service class Goal Importance

BATCHHI Velocity 60 3

BATCHMED Velocity 40 4

BATCHLOW Velocity 20 5

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

21
0

23
0

25
0

27
0

29
0

Time (s)

0

20

40

60

80

100

V
el

oc
ity

BATCHLOW

BATCHMED

BATCHHI
314 System Programmer’s Guide to: Workload Manager

Test two: Reduced goals
For test two, we reduced the goals to try to make them achievable. We repeated the test
several times, reducing goals in an attempt to find a level where each service class would
run, while trying to maintain a distinction between the different goals.

In this test, we still found that the higher importance workload dominated the other work. The
goals that we used are shown in Table 12-2.

Table 12-2 Goals for test two

The typical result is shown in Figure 12-2. WLM initially tries all three service classes at the
same priority, and they all receive the same service. It then moves BATCHLOW below the
others, and the service that BATCHLOW receives drops to 0. A short time later, BATCHMED
is also moved below BATCHHI, and its service falls to 0.

The spike at the beginning is evidence of a common problem on uniprocessor systems. As
the first CPU bound BATCHHI job started running, TSO was locked out for a short period.
This stopped the second job in that service class from being submitted, so until WLM made
an adjustment, only one job was running.

Figure 12-2 Typical result of lower goals

We were a little surprised that we were unable to get all of the work to run at the same time
even with very low goals. Real world experience suggests that reducing the goals of CPU
bound work will often help. This suggests that the work that we used was slightly too extreme,
and it also indicates that WLM can be quite conservative in protecting high importance work.

Service class Goals for three separate tests Importance

BATCHHI Velocity 30, 15, and 10 3

BATCHMED Velocity 20, 10, and 5 4

BATCHLOW Velocity 10, 5, and 2 5

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

21
0

23
0

25
0

27
0

29
0

Time (s)

0

20

40

60

80

100

V
el

oc
ity

BATCHLOW

BATCHMED

BATCHHI
Chapter 12. Uniprocessor considerations 315

Test three: Discretionary work
We performed some tests with the BATCHLOW service class set to discretionary. These
tests demonstrate the effect of WLM capping overachieving service classes to give service to
discretionary work.

Table 12-3 shows the goals that we used for test three.

Table 12-3 Goals for test three

We had to run this test for a longer time before the situation seemed to stabilize. The results
are shown in Figure 12-3 on page 317. This was the first test where we had each service
class running consistently.

Initially, the results are similar to before. WLM set BATCHMED and BATCHHI to the same
priority, and they received equal service. Then, BATCHMED is capped to try to give some
service to the discretionary work. However, all the extra service is absorbed by BATCHHI.
Both BATCHMED and BATCHHI are overachieving their goal, so they both get capped, and
the discretionary work starts running.

Update: We ran this test again later. This time when the velocities were set to 10, 5, and 2,
WLM set all three service classes to the same dispatching priority, and all three service
classes received equal service. This was what we were expecting to see with low goals the
first time we ran this test.

This demonstrates the problem with trying to control how WLM manages the work. WLM
uses many different factors to decide what to do, and there are too many things that
influence the outcome, even in a simple test.

It also shows the danger in repeating a test after you have written up the results.

Service class Goals for three separate tests Importance

BATCHHI Velocity 15 3

BATCHMED Velocity 10 4

BATCHLOW Discretionary
316 System Programmer’s Guide to: Workload Manager

Figure 12-3 Results with discretionary work

There are several points to note about this result:

� In this situation, discretionary work received much better service than the same work with
a low importance velocity goal in the previous tests.

� BATCHMED also received much better service than when there was no discretionary
work. When BATCHLOW had a velocity goal, BATCHHI dominated the system. When
BATCHLOW had a discretionary goal, BATCHHI was capped and BATCHMED benefited.

� BATCHHI and BATCHMED were both achieving the goals we set. Capping only occurs
when a service class is significantly overachieving its goals. It is capped to a level where it
is still overachieving, but by a limited amount.

In this test, BATCHLOW ended up with a velocity above the other two service classes. Do not
read too much into that. The actual numbers are extremely dependent on the workload. If we
had ten jobs in BATCHLOW, the reported velocity would have been more like 4%. The
significant point is that all service classes receive service simultaneously, and the goals we
set are achieved.

Test four: The effect of goals on capping
We repeated the previous test, but increased the goals of the BATCHMED and BATCHHI
service classes. Table 12-4 shows the goals for this test.

Table 12-4 Goals for test four

In this test, we can see that after some initial adjustments that were reversed, WLM again
caps BATCHHI, which is overachieving its goal. The capping occurs because we have

Service class Goals for three separate tests Importance

BATCHHI Velocity 30 3

BATCHMED Velocity 20 4

BATCHLOW Discretionary

10 50 90 13
0

17
0

21
0

25
0

29
0

33
0

37
0

41
0

45
0

49
0

53
0

57
0

Time (s)

0

20

40

60

80

100

V
el

oc
ity

BATCHLOW

BATCHMED

BATCHHI
Chapter 12. Uniprocessor considerations 317

discretionary work, but the actual beneficiary is BATCHMED. BATCHMED absorbs all of the
extra service, but does not achieve its goal, which means that it is not capped, and
BATCHLOW still gets no service. However, this is still better than what we saw with a velocity
goal for BATCHLOW. In that case, BATCHMED and BATCHLOW were both completely shut
out by BATCHHI.

The capping still allows BATCHHI to exceed its goal. The BATCHHI goal is a velocity of 30,
while the capped velocity is about 40.

Figure 12-4 Results from test four: Discretionary work and higher goals

Test five: Resource Groups
Resource Groups are another method for controlling access to the CPU between competing
tasks.

We set up Resource Groups to guarantee the BATCHLOW and BATCHMED service classes
a minimum share of the CPU. We defined type 2 Resource Groups to guarantee service as a
percentage of the LPAR. Table 12-5 shows the goals for test five.

Table 12-5 Goals for test five

Results of this test are shown in Figure 12-5 on page 319. The results with Resource Groups
were quite different to previous results.

Service class Goals Importance Resource Group

BATCHHI Velocity 30 3

BATCHMED Velocity 20 4 10% of LPAR

BATCHLOW Velocity 10 5 5% of LPAR

10 50 90 13
0

17
0

21
0

25
0

29
0

33
0

37
0

41
0

45
0

49
0

53
0

57
0

Time (s)

0

20

40

60

80

100

V
el

oc
ity

BATCHLOW

BATCHMED

BATCHHI
318 System Programmer’s Guide to: Workload Manager

Figure 12-5 Running with Resource Groups

The Resource Groups give the minimum share to the service class when it is missing its
goals, even if that causes more important work to miss its goals. WLM managed the
Resource Group minimum shares by changing the dispatching priorities. We can see that
there are short periods where BATCHLOW and BATCHMED are each elevated above the
other service classes. BATCHHI occasionally does not get any service. The minimum share
Resource Group does not protect BATCHMED or BATCHLOW from significant periods of no
service; although on average, they receive the service specified.

During this period, we also noticed that TSO response time became erratic, with the looping
batch jobs elevated above TSO from time to time. TSO period 1 was Importance 1, TSO
period 2 Importance 2, so TSO is defined as more important than the batch. The problem was
presumably because defining the Resource Groups allows the lower importance work to
cause higher importance work to miss its goal.

These results suggest that Resource Groups are not very suitable for guaranteeing service
for an online region; the response time is too erratic. Resource Groups can be useful for
batch work, but it seems that there is also a risk to higher importance work.

Conclusions
Normally, WLM manages access to the CPU by changing dispatching priorities. When
running CPU bound work in a single CPU system, that control is not very precise. To share
the CPU between two CPU bound tasks, WLM has to make the priories equal and give them
equal access to the CPU. A single task can lock out all lower priority tasks for as long as it
uses the CPU.

To share the CPU unequally between CPU bound tasks or to restrict the amount of time that
a high priority task can use the CPU requires more granular control. By having discretionary
work in the system, you can effectively “turn on” a more granular control. Resource Groups
give you some manual methods of controlling the share received by different service classes,
but the distribution of service can be uneven.

10 50 90 13
0

17
0

21
0

25
0

29
0

33
0

37
0

41
0

45
0

49
0

53
0

57
0

Time (s)

0

20

40

60

80

100

V
el

oc
ity

BATCHLOW

BATCHMED

BATCHHI
Chapter 12. Uniprocessor considerations 319

12.2 Recommendations
This section contains suggestions for managing work in a single CPU system.

12.2.1 Number of service classes
Minimize the number of service classes that you use. Tasks in a single service class run at
the same dispatching priority, and they will all get a fair share of the CPU. A task can only be
starved of CPU by a task in a different service class. The more service classes you create,
the more opportunities you have for one task to lock out others.

Try to ensure that all your service classes receive at least some service. Low importance
service classes that receive no service can cause problems, such as jobs that you cannot
cancel.

12.2.2 Goals
Velocity goals need to be meaningful figures. When you set dispatching priorities in the
pre-WLM days, the relationship to other priorities was what was important. When setting
velocities, the actual number is what matters. The relationship to other classes is not so
important.

On a loaded single CPU system, velocities are likely to be quite low. In many circumstances,
a velocity of 10 might be quite high. See 5.2.4, “Using execution velocity goals” on page 176
for more discussion.

For CPU bound work on a single CPU system, the velocity corresponds approximately to the
percentage CPU that one task can use. So, if a single batch job should not be able to use
10% of the CPU on a loaded system, the batch service class probably should not have a
velocity goal of 10%.

Do not use velocities to try to rank work according to importance. Use the Importance
parameter; that is its purpose. Set the velocity to whatever the work really needs for
acceptable performance. In some circumstances, you might have less important work with a
higher velocity than more important work.

Velocity goals are probably the most difficult goals to use. Where possible, use response time
goals. Response time goals are easier to relate to the performance that people see, and it is
easier to understand whether the goals are reasonable.

12.2.3 SYSSTC
On a single CPU system, you need to be very careful about which work runs in SYSSTC. A
CPU intensive task in SYSSTC will stop all your regular work until it gives up the CPU. WLM
will not do anything to stop it.

Tasks that run in SYSSTC need to be well behaved. Ideally, they should only use the CPU for
a fraction of a second at a time before releasing it. If you are aiming for subsecond response
time from any regular work, then it cannot afford to wait a long time to be dispatched.

On the other hand, ensure that the tasks that need to be in SYSSTC run there. There are
some tasks that must be dispatched quickly, or other problems can result. TCP/IP is an
example; delays can cause more work because traffic is resent. SYSSTC provides protection
for these tasks on a single CPU system.
320 System Programmer’s Guide to: Workload Manager

12.2.4 CPU Critical
CPU critical might be useful to ensure more important work is not delayed by less important
work. However, if you set the CPU critical parameter for CPU intensive work, it restricts what
WLM can do to share the CPU with less important work. Use it with caution.

12.2.5 Discretionary work
As we saw in our testing, discretionary work running can change how WLM manages the
CPU, benefiting both discretionary and nondiscretionary work. In some circumstances,
discretionary work can get better service than the same work running in a service class with a
goal.

Discretionary is a nice, safe place to run work such as CPU-intensive batch jobs. It cannot
starve other work of CPU. One way to implement this would be to use a two period service
class. The first period can have a response time or velocity goal with a duration equivalent to
a small number of CPU seconds, and the second period can be discretionary.

If you have plenty of discretionary work running in your system, and you are confident that it
will receive service, discretionary can even be appropriate for very long-running CPU
intensive TSO transactions, third period TSO perhaps.

Important: You must use SPM as described in 7.9, “Best practices for STC” on page 227
to prevent accidently declassifying system address spaces.
Chapter 12. Uniprocessor considerations 321

322 System Programmer’s Guide to: Workload Manager

Chapter 13. Enterprise Workload Manager

This chapter provides an introduction to the IBM Enterprise Workload Manager (EWLM) and
the correlations with WLM. It explains the fundamental concepts on which EWLM is based
and describes the functionality of the elements that build this solution.

13

Note: For simplicity, this chapter refers to the z/OS Workload Manager as zWLM.
© Copyright IBM Corp. 2005, 2006, 2007. All rights reserved. 323

13.1 Introduction to EWLM
The Enterprise Workload Manager (EWLM) is a set of technologies and system services that
enable system administrators to manage and monitor resources across multiple platforms.

The Enterprise Workload Manager (EWLM) enables you to define business-oriented
performance goals. It provides an end-to-end view and management of the workload
performance across multiple servers.

EWLM is an implementation of policy-based performance management and can be seen as
an extension of the Workload Manager for z/OS philosophy. The scope of management is a
set of servers that you group into what is called an EWLM Management Domain. The set of
servers included in the Management Domain should have a logical relationship, for example,
the set of servers supporting a particular line of business. The line of business might consist
of multiple business processes spread across a few servers or a thousand servers.

There is a management focal point for each EWLM Management Domain, called the EWLM
domain manager. The domain manager coordinates policy actions across the servers, tracks
the states of those servers, and accumulates performance statistics on behalf of the domain.

On each server (operating system) instance in the Management Domain, there is a thin layer
of installed EWLM logic called the EWLM managed server. The managed server is positioned
between the operating system and the EWLM domain manager. The managed server layer
understands each of the supported operating systems and gathers resource usage and delay
statistics known to the operating system.

More importantly, the managed server layer gathers relevant transaction-related statistics
from middleware applications. The application middleware implementations, such as
WebSphere Application Server, understand when a unit of work starts and stops. The
middleware also understands when a unit of work has been routed to another server for
processing, for example, when a Web server routes a servlet request to a WebSphere
Application Server.

The managed server layer dynamically constructs a server-level view describing relationships
between transaction segments known by the applications with resource consumption data
known by the operating system. A summary of this information is periodically sent to the
domain manager, where the information is gathered together from all the servers in the
Management Domain to form a global view.

An important aspect of the EWLM approach is that all data collection and aggregation
activities are driven by a common service level policy, called the EWLM Domain Policy. This
policy is built by an Administrator to describe the various business processes that the domain
supports and the performance objectives for each process.

To permit the EWLM domain manager to construct an end-to-end view of each type of
business transaction, the processing segments performed by each participating middleware
instance must be correlated, or pieced together. For example, a transaction received by a
Web server can flow to a WebSphere Application Server instance that might update a
database. The transaction might even spawn by routing a sub-transaction to another server.
It is the Domain Manager that correlates all of the information from the various managed
servers, and it is capable of constructing the application and server topology used by a
certain application.

The final aspect of EWLM is the EWLM Control Center, a browser-based application tailored
to the needs of an EWLM administrator, analyst, and operator. This is where all the EWLM
concepts come together, where you can create a service level Domain Policy and activate
324 System Programmer’s Guide to: Workload Manager

that policy on hundreds of servers with a single click. Reporting data is then available to let
you view performance from a business perspective. And if you need the details, you can see
the topology of servers and applications supporting each transaction type and understand
where the time was spent. The information is organized in such a way that an administrator or
analyst can easily drill down to what is relevant.

Figure 13-1 shows an example of EWLM Management Domain with the related components.

Figure 13-1 EWLM Management Domain

In addition to the monitoring capability, EWLM currently provides two management
capabilities: Partition management and load balancing. In partition management, EWLM can
dynamically manage CPU resources across multiple partitions within the same physical
POWER5™ machine. Load balancing is where EWLM can monitor and provide
recommendations to the Load Balancer about how to distribute work to achieve optimal
performance. In the future, we can expect the addition of more and more management
functionalities that will allow distributed transactions to be managed to end-to-end goals,
especially on z/OS.

For further details about EWLM components, functions, installation, and usage, refer to IBM
Enterprise Workload Manager V2.1, SG24-6785.

ARM-instrumented middleware
In order to manage transactions across different operating system platforms, the middleware
has to be enabled (instrumented) to collect this data with the Application Response
Measurement (ARM) V4.0 standard. Instrumentation provides the data to create the topology
of a transaction, that is, through what server instances or application instances a transaction
flows. In a typical Web transaction, the transaction starts at a Web server (edge server), flows
to an application server, and then to a database server. Without instrumentation, the
transaction looks like three separate processes with three separate response times rather
than one transaction. The ARM-instrumented middleware creates a correlator to pass this

Web Serving Application Serving Data/Transaction Serving

Operating System

Operating System

Apache
WebSphere
Application

Server
DB2

EWLM domain manager

Policy Management

Data Aggregation

Management Algorithms

EWLM managed server EWLM managed server EWLM managed server

Operating System Operating System
Chapter 13. Enterprise Workload Manager 325

information, and ARM data is captured only if a correlator is created or sent from an
ARM-instrumented application. Figure 13-2 shows an example of ARM-instrumented
middleware.

Figure 13-2 ARM implementation

If the application is not instrumented, EWLM can only manage the application by using the
partition or process class. Partition and process classes cannot be used to classify work
running on the z/OS platform.

ARM enablement on z/OS
Workload Manager on z/OS has provided workload management services to middleware,
such as DB2, WebSphere, CICS, and IMS for a long time. For example, DB2 DIST uses
WLM enclave services to schedule and process received work requests. In the current
implementation, EWLM on z/OS leverages the existing WLM services and maps them to
ARM calls, so that an EWLM-managed server can simply pick up the performance data and
send it to the domain manager. Figure 13-3 on page 327 depicts a general flow using the
distributed data facility (DDF) as a sample environment. In addition, z/OS also has added a
native implementation of the ARM calls as described in the OpenGroup ARM standard. This
allows applications written in C or C++ to use the ARM services for EWLM use. The EWLM
product also adds a Java implementation of the ARM services.

Apache

arm_start_tran()

arm_stop_tran()

…..

EWLM ARM
Impl

Policy

User Request

{ARM
Corr #1}

Websphere
arm_start_tran()

…..

DB2 UDB

arm_start_tran()

arm_stop_tran()

…..

EWLM
domain

manager

EWLM ARM
Impl

EWLM ARM
Impl

Apache
data

Apache
data

data
WebSphere

data

data
DB2 UDB

data
DB2 UDB co

rr
el

at
ed

{ARM
Corr #2}

arm_stop_tran()
326 System Programmer’s Guide to: Workload Manager

Figure 13-3 ARM and enclave

13.1.1 EWLM and zWLM policies
EWLM and zWLM policy structures are conceptually the same. The main difference is related
to the work managers running on the distributed operating systems and to their logical
components that receive and submit the work requests.

So, as far as the relationship between EWLM and z/OS WLM goes, at this time they are
driven by different service policies, operate independently, and have different scopes. EWLM
manages multi-tiered Application Environments that can run on different hardware platforms
and operating systems including z/OS, and EWLM has an end-to-end scope of control. The
z/OS WLM scope is limited to z/OS platforms. However, starting with z/OS 1.8, there is new
functionality that starts converging these policies.

Figure 13-4 on page 328 shows the definitions within each type of policy.

EWLMMS address space

EWLM_connect

Policy management

Collect data
Send data to domain
manager

EWLM_disconnect

ARM and Enclave Transactions

DB2 DDF - DB2DIST address space
Connect to WLM (IWNCONN)

arm_register_application
arm_start_application
arm_register_transaction

Create enclave (IWMECREA)

Enclave workrequest start and
stop calls (IWMESTRT, IWMESTOP)

arm_start_transaction
arm_stop_transaction
arm_start_transaction
arm_stop_transaction
arm_start_transaction
arm_stop_transaction

Enclave delete (IWMEDELE)

Disconnect from WLM
arm_stop_application
arm_destry_application

A
R
M

T
R
A
N
S

E
N
C
L
A
V
E

T
R
A
N

Chapter 13. Enterprise Workload Manager 327

Figure 13-4 EWLM and zWLM policies

EWLM and zWLM service classes are separate items. The EWLM service class is not
automatically used by zWLM, even if there is a service class with the same name. zWLM
always does its own classification.

The attribute values for work requests received by the entry application of an EWLM
Management Domain might be different from those passed to z/OS WLM, especially if the
classification on the distributed platform happened in an Application Environment different
from the entry point on z/OS. For this reason, prior to z/OS 1.8, it might not always be
possible to have a one-to-one mapping for EWLM service classes and z/OS WLM service
classes. z/OS 1.8 introduce a new pseudo-subsystem, EWLM, that can be used to classify
transactions based on the previous classification assigned by EWLM using either the service
class or transaction class passed as part of the correlator. If the EWLM subsystem is not
defined, the classification defaults to the work qualifier subsystem.

When the EWLM subsystem is defined, work can be classified to a zWLM service class
based on the service class or transaction class assigned by EWLM. When EWLM classifies
the work to a transaction class, it can use filters that are not available on z/OS. zWLM does
not have the same information about the origin of the work if it has already passed through
middleware on other platforms. However, by using the EWLM transaction or service class as
a basis for assigning the zWLM service class, zWLM can indirectly use the same initial
granularity used by EWLM in the workload classification.

Using the existing EWLM service class or transaction class classifications keeps the target
performance goals defined in both policies synchronized. In this case, the response time
defined within the zWLM service class should be a portion of the overall response time
defined by the EWLM service class. The zWLM service class goal should be a subset of the
EWLM goal to account for time spent on other platforms. For example, if the EWLM service
class has a response time goal of 1.5 seconds, the zWLM goal might be 0.5 seconds. The
numbers should obviously be adjusted to take into account the times needed for each hop in
the transaction.

There does not need to be a one to one correspondence between EWLM service classes and
zWLM service classes.

EWLM and z/OS WLM Policy

EWLM
Domain Policy

Service Policy
Workloads

Service Classes
Applications

Transaction Classes
Filters

Platforms
Process Classes
Filters

Partitions
Partition Classes
Filters

z/OS WLM
Service Definition

Service Policy
Workloads

Service Classes
Subsystem Classification rules

 - Work qualifiers
Report Classes
Application Environments
Scheduling Environments
Options
328 System Programmer’s Guide to: Workload Manager

13.1.2 Platform support in EWLM 2.1

Domain managers
The domain managers are:

� Red Hat/SuSe Linux
� AIX® 5L™ and 5D
� i5/OS® 5.3
� Microsoft® Windows 2000/ Microsoft Windows 2003
� z/OS 1.6

Managed servers
The managed servers are:

� AIX 5L Version 5.2
� OS/400® 5.3
� Microsoft Windows 2000/Microsoft Windows 2003
� Sun™ Microsystems™ Solaris™ 8 (SPARC Platform Edition)
� Sun Microsystems Solaris 9 (SPARC Platform Edition)
� HP-UX 11i for PA_RISC
� Linux SuSe SLES 9 SP2
� z/OS 1.6

ARM-instrumented middleware
The ARM-instrumented middleware is:

� WebSphere V5.1.1 and above
� DB2 UDB 8.2
� Apache
� Microsoft IIS Web Server

13.2 Getting started
We already had installed and set up the EWLM-managed server on our z/OS system. We
implemented a 3-tier Trade application: transactions were entering the system via an Web
server running on Windows, connecting to a WebSphere Application Server on UNIX and
accessing the data on a DB2 database located on z/OS using a type 4 JDBC driver.
Figure 13-5 on page 330 shows the workflow of the trade application.

Note: In the future, we can expect that more major subsystems, such as MQSeries,
Lotus® Domino, and CICS will be enabled for EWLM. IMS support for EWLM will be
available in R10.
Chapter 13. Enterprise Workload Manager 329

Figure 13-5 Workflow Trade application

This picture is actually taken from the EWLM control center. It shows that 2,804 Web
requests issued 46,597 database messages to DB2 on z/OS.

If you need to install and set up the EWLM environment on z/OS, refer to IBM Enterprise
Workload Manager V2.1, SG24-6785. We highly recommend that you read this IBM Redbook
first to understand the complete EWLM environment and how it is implemented in z/OS.

To classify EWLM work on a z/OS operating system, a new subsystem type named EWLM is
supplied by IBM. You have to define this subsystem to your zWLM service definition policy
before you can start classifying EWLM work. If you do not set up this subsystem, EWLM work
will be classified to the default work qualifiers service class defined by your installation.

13.2.1 How EWLM interfaces with z/OS
When the EWLM address space is started, it connects to WLM. Its main functions are:

� Manage the EWLM policy received from the domain manager.
� Collect the performance data and send it to the domain manager.

When middleware is started, it connects to WLM and specifies that it will participate in EWLM.
The middleware, for example the DB2 DIST address space, is then registered to ARM on
z/OS as an EWLM application participant.

In the case of DB2 DIST, ARM data is captured only if a correlator is sent from an
ARM-enabled distributed application such as WebSphere; otherwise, DB2 continues
processing distributed requests as it usually does.

When middleware receives a transaction, attribute values are passed with the correlator to
zWLM to classify the work request with the zWLM classification rules and associate it to a
service class.

From a monitoring perspective, performance data will be reported on both EWLM Control
Center and on the RMF WLMGL Postprocessor report.

To verify if an application running on the z/OS system is ARM-enabled, enter the
D WLM,AM,ALL command on your z/OS operator console. Figure 13-6 on page 331 shows
an example of the output.
330 System Programmer’s Guide to: Workload Manager

Figure 13-6 D WLM,AM,ALL

This shows us that EWLM ARM services are enabled for the DB2 DIST address space
DB8EDIST. The EWLM policy name is ITSO TRADE6 SERVICE POLICY FOR WEEKDAYS.

These are the steps that you need to perform to use the EWLM subsystem classification:

1. Define a service class for EWLM work.

If you plan to use an existing service class, omit this step; otherwise, add a new service
class to be assigned to the EWLM work. We assigned a new service class and named it
SC_EWLM.

2. Define the EWLM Subsystem.

To classify EWLM work on z/OS, add the new subsystem type EWLM to your zWLM
service policy definition.

Start your WLM ISPF application and create the new subsystem in your service definition
policy. Select option 6 Classification Rules and then create the subsystem with option 1.
Figure 13-7 on page 332 shows an example of the WLM ISPF application panel.

 -D WLM,AM,ALL
 IWM075I 17.08.22 WLM DISPLAY 418
 EWLM ARM SERVICES ARE ENABLED
 EWLM MANAGED SERVER JOBNAME=EWLMMS7 ASID=0078
 EWLM POLICY NAME=ITSO TRADE6 SERVICE POLICY FOR WEEKDAYS
 NUMBER OF REGISTERED PROCESSES=2, APPLICATIONS=1
 ADDRESS SPACES CURRENTLY REGISTERED WITH EWLM ARM:
 JOBNAME=DB8EDIST ASID=007C
 APPLICATION=DDF
 IDENTITY PROPERTIES=0 CONTEXT NAMES=0
 STARTED APPLICATION INSTANCES:
 DB8E
 TRAN=0 GROUP=DB8E
 REGISTERED TRANSACTIONS:
 SYS_DefaultZWLMTransactionName
Chapter 13. Enterprise Workload Manager 331

Figure 13-7 WLM ISPF application window

We create the new subsystem and assigned the service class named SC_EWLM to the
EWLM subsystem. Use Fold qualifier names = N to allow for lowercase characters on
qualifier names. The subsystem contains two qualifier types to reclassify EWLM
workloads:

– EWLM service class (ESC) qualifier to reclassify EWLM service classes
– EWLM transaction class (ETC) qualifier to reclassify EWLM transaction classes

We also made a wildcard (*) classification in the qualifier type EWLM service class (ESC)
to be able to identify and report incoming work that has already been classified by
previous EWLM instances to a separate report class. This report class then shows in the
SDSF enclave panel or in the RMF reports. Figure 13-8 shows an example of the
definition.

Figure 13-8 EWLM classification rules

 Subsystem-Type View Notes Options Help
 --
 Subsystem Type Selection List for Rules Row 1 to 13 of 13
 Command ===> __

 Action Codes: 1=Create, 2=Copy, 3=Modify, 4=Browse, 5=Print, 6=Delete,
 /=Menu Bar

 ------Class-------
 Action Type Description Service Report
 1_ ASCH APPC Transaction Programs ASCH
 __ CB WebSphere/Component Broker RCB
 __ CICS CICS Transactions CICS
 __ DB2 DB2 Sysplex Queries DB2QUERY
 __ DDF DDF Work Requests DDFBAT
 __ IMS IMS Transactions IMS
 __ IWEB Web Work Requests RIWEB
 __ JES Batch Jobs BATCHDIS BATCHDIS
 __ MQ MQSeries Workflow RMQ
 __ OMVS UNIX System Services OMVS
 __ STC Started Tasks STC RSYSDFLT
 __ SYSH linux
 __ TSO TSO Commands TSO

 Subsystem-Type Xref Notes Options Help
 --
 Create Rules for the Subsystem Type Row 1 to 1 of 1
 Command ===> __ SCROLL ===> PAGE

 Subsystem Type EWLM (Required) Fold qualifier names? N (Y or N)
 Description . . . EWLM Classifications____________

 Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 --------Qualifier-------- -------Class--------
 Action Type Name Start Service Report
 DEFAULTS: SC_EWLM_ REWLMDEF
 ____ 1 ESC_ *_______ ___ ________ REWLMESC
****************************** BOTTOM OF DATA ******************************
332 System Programmer’s Guide to: Workload Manager

We now switch to SDSF to look for EWLM enclaves. Figure 13-9 shows an example of an
SDSF window with an EWLM enclave.

If you do not see the enclaves, run the RMF Monitor I Postprocessor reports with the
report class period option. An example of the RMF Postprocessor JCL is shown on
Figure 13-10. Figure 13-11 shows the report created by the RMF Postprocessor.

Figure 13-9 SDSF enclave panel

Figure 13-10 RMF I Postprocessor JCL

Figure 13-11 RMF I Postprocessor report

13.3 Using the EWLM Control Center
The first step to view the EWLM data is to log on to the Control Center application using a
browser interface. Once logged in, you can see the list of the Monitoring tasks on the left
pane.

 Display Filter View Print Options Help

 SDSF ENCLAVE DISPLAY SC64 ALL LINE 1-2 (2)
 COMMAND INPUT ===> SCROLL ===> PAGE
 NP TOKEN SSType Status SrvClass Per PGN RptClass ResGroup CPU-
 2C006EAB07 DDF ACTIVE SC_EWLM 1 REWLMESC
 3C006EAAFF DDF ACTIVE SC_EWLM 1 REWLMESC

 //JOBNAMEX JOB (ACCOUNT),'PGMRNAME',CLASS=A,REGION=32M
 //RMFPP EXEC PGM=ERBRMFPP
 //MFPMSGDS DD SYSOUT=*
 //SYSIN DD *
 DATE(12192006,12192006)
 DINTV(0030)
 RTOD(1500,1530)
 SYSRPTS(WLMGL(RCPER))
 SYSOUT(A)
 /*

 REPORT BY: POLICY=WLMPOL REPORT CLASS=REWLMESC
 HOMOGENEOUS: GOAL DERIVED FR

 TRANSACTIONS TRANS-TIME HHH.MM.SS.TTT --DASD I/O-- ---SERVICE---- SERVIC
 AVG 0.75 ACTUAL 37 SSCHRT 0.0 IOC 0 CPU
 MPL 0.75 EXECUTION 37 RESP 0.0 CPU 996530 SRB
 ENDED 26011 QUEUED 0 CONN 0.0 MSO 0 RCT
 END/S 20.08 R/S AFFIN 0 DISC 0.0 SRB 0 IIT
 #SWAPS 0 INELIGIBLE 0 Q+PEND 0.0 TOT 996530 HST
 EXCTD 0 CONVERSION 0 IOSQ 0.0 /SEC 769 AAP
 AVG ENC 0.75 STD DEV 144 IIP
 REM ENC 0.00 ABSRPTN 1032
 MS ENC 0.00 TRX SERV 1032

 GOAL: RESPONSE TIME 000.00.00.500 AVG
Chapter 13. Enterprise Workload Manager 333

We clicked Service Classes to display the service classes. Figure 13-12 shows an example.

Figure 13-12 WLM main panel

We have three service classes defined. The Gold_Trade6_SC is the only one active in this
interval. The goal for Gold_Trade6_SC is set to 1.500 average response time, the current
average response time is 00.189 seconds, the PI is 0.13, and the Importance is set to High.

We decided to manage the Distributed Data Facility (DDF) transactions of this workload
based on the EWLM service class Gold_Trade6_SC classification and assign an appropriate
goal in the zWLM policy. In our zWLM policy, we added a new service class named
SC_GOLD and set a two period goal. We also added a new workload definition to zWLM to
identify this new type of work. We named the workload EWLM. Because we wanted the
Trade6 transactions to process quickly by our z/OS hop, we set a response time goal of 0.1
seconds for the first period and started with a duration of 500 service units. Figure 13-13
shows an example of the service class definition.

Figure 13-13 Trade 6 classification on the zWLM service policy

 Service-Class Xref Notes Options Help
 --
 Modify a Service Class Row 1 to 3 of 3
 Command ===> __

 Service Class Name : SC_GOLD
 Description EWLM RequestsTrade6
 Workload Name EWLM (name or ?)
 Base Resource Group ________ (name or ?)
 Cpu Critical NO (YES or NO)

 Specify BASE GOAL information. Action Codes: I=Insert new period,
 E=Edit period, D=Delete period.

 ---Period--- ---------------------Goal---------------------
 Action # Duration Imp. Description
 __
 __ 1 500 2 80% complete within 00:00:00.100
 __ 2 3 Execution velocity of 30
334 System Programmer’s Guide to: Workload Manager

Now we define the EWLM Subsystem Type in the existing Classification Rules. We specified
N on the “Fold qualifier names?” because the classification is case sensitive; otherwise, the
classification will not match. Figure 13-14 shows an example.

Figure 13-14 Classification of Gold service class in the EWLM Subsystem

We installed and activated the new zWLM service definition.

If we now look at the enclave SDSF panel, we can see that the DDF transactions belonging to
this workload are now managed under the SC_GOLD service class and reported under
RGOLDSC report class. Figure 13-15 shows the enclaves running in report class RGOLDSC.

Figure 13-15 Enclaves in report class RGOLD

After completion of the next RMF interval, we run a service class period report to look at how
our goal matched the transaction response time. Figure 13-16 shows the JCL that we used
and Figure 13-17 on page 336 shows a screen capture of the report produced by RMF I
Postprocessor.

Figure 13-16 RMF Postprocessor JCL

 Modify Rules for the Subsystem Type Row 1 to 2 of 2
 Command ===> __ SCROLL ===> PAGE

 Subsystem Type . : EWLM Fold qualifier names? N (Y or N)
 Description . . . EWLM Subsystem for ESC/ETC

 Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 --------Qualifier-------- -------Class--------
 Action Type Name Start Service Report
 DEFAULTS: SC_EWLM REWLMDEF
 ____ 1 ESC Gold_Tra 1 ________ ________
 ____ 2 ESC de6_SC 9 SC_GOLD RGOLDSC

 Display Filter View Print Options Help

 SDSF ENCLAVE DISPLAY SC64 ALL LINE 1-3 (3)
 COMMAND INPUT ===> SCROLL ===> PAGE
 NP TOKEN SSType Status SrvClass Per PGN RptClass ResGroup CPU-
 3400849001 DDF ACTIVE SC_GOLD 1 RGOLDSC
 3800848FF8 DDF ACTIVE SC_GOLD 1 RGOLDSC
 3C00848FF9 DDF ACTIVE SC_GOLD 1 RGOLDSC

//JOBNAMEX JOB (ACCOUNT),'PGMRNAME',CLASS=A
//RMFPP EXEC PGM=ERBRMFPP
//MFPMSGDS DD SYSOUT=*
//SYSIN DD *
 DATE(12202006,12202006)
 DINTV(0030)
 RTOD(1330,1400)
 SYSRPTS(WLMGL(SCPER))
 SYSOUT(A)
/*
Chapter 13. Enterprise Workload Manager 335

Figure 13-17 RMF Report on service class period

We see that almost all of the transactions exceeded their goal, and that the performance
index is 0.5.

13.3.1 Monitoring the use of the EWLM Control Center
We now use the EWLM Control Center to monitor our service classes and transactions.

To view the server topology for our Gold_Trade6_SC service class, we selected Service
Classes. We then selected the Gold_Trade6_SC, selected Server topology from the
drop-down list, and clicked Go. Figure 13-18 on page 337 shows an example.

REPORT BY: POLICY=WLMPOL WORKLOAD=EWLM SERVICE CLASS=SC_GOLD
 CRITICAL =NONE

TRANSACTIONS TRANS-TIME HHH.MM.SS.TTT --DASD I/O-- ---SERVICE----
AVG 0.74 ACTUAL 36 SSCHRT 0.0 IOC 0
MPL 0.74 EXECUTION 36 RESP 0.0 CPU 1389K
ENDED 36120 QUEUED 0 CONN 0.0 MSO 0
END/S 20.07 R/S AFFIN 0 DISC 0.0 SRB 0
#SWAPS 0 INELIGIBLE 0 Q+PEND 0.0 TOT 1389K
EXCTD 0 CONVERSION 0 IOSQ 0.0 /SEC 772
AVG ENC 0.74 STD DEV 145
REM ENC 0.00 ABSRPTN 1043
MS ENC 0.00 TRX SERV 1043

GOAL: RESPONSE TIME 000.00.00.100 FOR 80%

 RESPONSE TIME EX PERF AVG ------ USING% ----- -----------
SYSTEM ACTUAL% VEL% INDX ADRSP CPU AAP IIP I/O TOT CPU
SC64 94.9 93.9 0.5 0.2 4.6 N/A N/A 0.0 0.3 0.3

 ----------RESPONSE TIME DISTRIBUTION-----
 ----TIME---- --NUMBER OF TRANSACTIONS-- -------PERCENT------- 0 10
 HH.MM.SS.TTT CUM TOTAL IN BUCKET CUM TOTAL IN BUCKET |....|..
< 00.00.00.050 34227 34227 94.8 94.8 >>>>>>>>
<= 00.00.00.060 34258 31 94.8 0.1 >
<= 00.00.00.070 34270 12 94.9 0.0 >
<= 00.00.00.080 34274 4 94.9 0.0 >
<= 00.00.00.090 34275 1 94.9 0.0 >
<= 00.00.00.100 34280 5 94.9 0.0 >
<= 00.00.00.110 34287 7 94.9 0.0 >
<= 00.00.00.120 34291 4 94.9 0.0 >
<= 00.00.00.130 34293 2 94.9 0.0 >
<= 00.00.00.140 34297 4 95.0 0.0 >
<= 00.00.00.150 34299 2 95.0 0.0 >
<= 00.00.00.200 34309 10 95.0 0.0 >
<= 00.00.00.400 34318 9 95.0 0.0 >
> 00.00.00.400 36120 1802 100 5.0 >>>
336 System Programmer’s Guide to: Workload Manager

Figure 13-18 Monitor Service Classes

The server topology displayed shows transactions that are classified to the Gold_Trade6_SC
presented using the related server topology. The detailed information shows 2720 requests
issued on our Web server generating 40475 DB2 messages sent to DB2 on the z/OS system.
You can see this in Figure 13-19.

Figure 13-19 Display of server topology

From this panel, you can click each server icon to view the application instances running on
each server (shown in Figure 13-20 on page 338).
Chapter 13. Enterprise Workload Manager 337

Figure 13-20 Application instances on servers

If you need additional details about the middleware instance, you can move your cursor over
the application instance to view a detailed information window displayed on the panel (see
Figure 13-21).

Figure 13-21 Server Topology: Detailed pane

The information shown includes response time measurements and also the name of the DB2
DDF instance, in our case, DB8E, and that DB2 is the hop number 2 for this workload. This
shows how it is simple for you to keep track of a multi-tier application and have an idea of how
the multiple application pieces behave in regard to their performance goal.
338 System Programmer’s Guide to: Workload Manager

If application transactions are missing their goals, it is simple with EWLM to determine which
hop or middleware might be in trouble and then focus on the specific section of the
application with additional monitors, such as zWLM, DB2 PE, or RMF in case of z/OS.

We meant in this chapter to give you a brief summary of EWLM and how it works with zWLM.
To learn more about EWLM and its features on z/OS and distributed servers, refer to the
redbook IBM Enterprise Workload Manager V2.1, SG24-6785.
Chapter 13. Enterprise Workload Manager 339

340 System Programmer’s Guide to: Workload Manager

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM Redbooks” on
page 341. Note that some of the documents referenced here may be available in softcopy
only.

� z/OS Intelligent Resource Director, SG24-5952

� OS/390 Workload Manager Implementation and Exploitation, SG24-5326

� VSAM Demystified, SG24-6105

� DB2 for z/OS Stored Procedures: Through the Call and Beyond, SG24-7083

� IBM Enterprise Workload Manager V2.1, SG24-6785

Other publications
These publications are also relevant as further information sources:

� z/OS V1R8.0 Resource Measurement Facility (RMF) Report Analysis, SC33-7991

� z/OS System Management Facilities (SMF), SA22-7630

� z/OS MVS Initialization and Tuning Reference, SA22-7592

� z/OS V1R8.0 MVS Planning Workload Management, SA22-7602

Online resources
These Web sites and URLs are also relevant as further information sources:

� LSPR for IBM zSeries and S/390

http://www.ibm.com/servers/eserver/zseries/lspr/

� OpenGroup ARM standard

http://www.opengroup.org/arm

How to get IBM Redbooks
You can search for, view, or download IBM Redbooks, Redpapers, Hints and Tips, draft
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
this Web site:

ibm.com/redbooks
© Copyright IBM Corp. 2005, 2006, 2007. All rights reserved. 341

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD101151
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD101151

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
342 System Programmer’s Guide to: Workload Manager

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

Symbols
$P SRVCLASS 194
$S SRVCLASS 194
$T SRVCLASS 194
_BPXK_WLM_PROPAGATE 288

A
administration application 30
administration policy management 30
alias devices 55
APPC 62, 230
Application Environment

definition 13
application environment

definition 140
Application Environments 261

server address spaces 13
work manager 13

application environments
concepts 92
stored procedures 246

ARM 325
assistant 252
Average response time 38, 128
average response time 172
average transaction response time 15

B
base devices 55
Batch 62
bottleneck 45
BPXAS 284
BPXBATCH 285
BPXOINIT 284, 289
buckets, response time 38
Business Unit of Work 31
business unit of work 6

C
capping 46, 317

resource group 12
Capping overachieving work 183
CFCC 105
chpriority() 293
CICS 62, 298
classification rules 129

DB2 250
TSO 220

client SRB 33
CNTCLIST 116, 218
complex query 251
Component Broker 258
© Copyright IBM Corp. 2005, 2006, 2007. All rights reserved.
connect time 27
Control Center 324
controller region 265
coordinator 252
correlator 326
couple data set 121
CPAI 21

formula 21
CPENABLE 116
CPU and storage critical 185
CPU bound tasks 312, 319
CPU contention 312
CPU CRITICAL 87
CPU Critical 321
CPU critical 302
CPU delays 35
CPU intensive TSO transactions 321
CPU service units 22
CPU time 20

formula 20
CPU-bound 315
CPU-bound task 312
CPU-intensive batch jobs 321
Cycle time 21

formula 21

D
Daemon 284
data collection 324
DB2

client strings 239
DB2 Connect 100
DB2 stored procedures

see stored procedures
DDF 234
delay 14
delay states 35
dependent enclave 248
device delay 54
device usage 54
disconnect time 27
Discretionary 11, 128, 316
discretionary 40, 50, 182, 316, 319
discretionary goal 50
discretionary goal management

donors 50
discretionary goals 182
discretionary service class period 40
Discretionary work 321
dispatchable unit 30

resources 31
Dispatching priorities 312
dispatching priorities 319
dispatching priority 31, 47, 312
 343

domain manager 324
definition 324

domain policy
definition 324

donor 43
DRDA 236
Driver Type-2 239
Driver Type-4 239
DSNTIPX 243
dynamic internal service classes 69
dynamic service class 194

E
efficiency algorithm 56
enclave

accounting 34
characteristics 34
dependant 34
description 34
dispatching priority 34
independents 34
management 64
reports 240
types 34

enclave exploiters 65
enclave propagation 286
enclave SRB 33
Enclaves 261
enqueue 46
enqueue promotion 116
enqueue promotion interval 91
ERV 115
ESS 55, 60
ETR 6, 17

formula 18
EWLM 323

policy-based 324
execution delay monitoring 65
Execution velocity 128
external service classes 69

F
Fork 284, 286
fork and spawn function calls 286

G
goal algorithm 56
Goals 320
goals

response time 218
Group capacity 102

H
health indication 98
HTTP

Classification rules 274

I
I/O delay 45
I/O delays 35
I/O performance metrics 25
I/O priority management

decisions 54
goals 53

I/O response time 25
components 25

IBM Enterprise Storage Server 55, 60
ICF 105
Idle 14
IEAOPTxx 114

zAAP 107
IFL 105
importance 3, 12, 319–320
Importance levels 180
IMS 62
INITIMP 117
INITIMP parameter 117
Instances 262
instrumented 325
Intelligent Resource Director 102
IOSQ time 26
IRD 102

CSSP IOQP 54–55
IRLM locks 90
ISHELL 285
ISPF application

security 119
ISTEXCGR 96
ITR 22

formula 22
IWMMNTFY 68
IWMRPT 68
IWMSRSRG macro 98
IWMSRSRS macro 98
IWMSSEL 260
IWMTAFF 260

J
Java 31
Java code flow 106
JDBC 239
JES2 job selection 194
JES2 service class 194
JVM 31

K
Kernel 284

L
LINUX 103
load balancing 325
Load Balancing Advisor 99
Local PI 36
locks 46
LSPR 23
344 System Programmer’s Guide to: Workload Manager

methodology 24
workload 24

M
maintaining service goals 169
managed server

definition 324
management domain 324
Managing Service Definitions 186
mapping file 266
MCCAFCTH 115
MDB

Classification rules 277
MFLOPS 21
MIPS 21
MPL 51
MPL (OUTR) delay 45
MSU 83
multisystem enclaves 34

N
nice() 293
Nonpreemtible Service Request 30

O
OMVS 284
orkload specification 126
OW28820 149

P
paging delay 45
parallel access volume 55
parallel access volumes 60
partition management 325
path length 21
PAV

static 55
PB 66
pending time 26
percentile response time 172
performance block 66
performance goal 10
performance group periods 219
performance index 36

calculation 37
local 36
sysplex 36

performance management
metrics 15

permanent service class 194
PI calculation example 38
Platform support in EWLM 2.1 329
policy adjustment

donor 43
receiver 44

Preemptible Client Service Request 30
Preemptible Enclave Service Request 30
Preemptible Task 30

Preemptible-Class SRB 33
Process 284
processor delay 45
processor performance

metrics 20
pthread_create 286

Q
Query Parallelism 254
Quiesced 14

R
RACF 119
receiver 43, 45

bottlenecks 45
selecting 45

receiver selection 45
Redbooks Web site 342

Contact us xv
region goal 298
report classes 183
Resource Grou 50
Resource Group 82
resource group 12, 76, 184

definition 127
Resource Groups 184, 318
Resource groups 319
resource groups 319

discretionary goal management 50
resource utilization 18

formula 18
response time 10, 12, 15–16

distribution 38
formula 16

Response time buckets 174
response time goals 172
response time goals for CICS and IMS 174
Response time with percentile 128
Revisiting Service Definitions 187

S
sampling 14
Scheduling Environment 14

definition 14
scheduling environment 141
SDP 19

formula 19
Security access 119
servant regions 265
server address space delay 45
server address space management 91
server address spaces 68
server topology 67, 69
server weight 98
servers

management 71
Service Class

SYSSTC 225
 Index 345

service class 3
definition 128
SYSTEM 224

Service Class periods 179
Service Classes 168
service classes 320
Service Definition 8
service definition 123
Service Level Agreement 6
Service Policies 7
Service policies 8
service units 138
set goals 170
setpriority() 293
single CPU system 312
SMF

type 99 records 149
SMF 72 record 236
soft capping 101
Spawn 284, 286
spawn 286
specialty processor 104
Specialty Processors 104
SPECIFIC function 99
SPM rules 231
SQL 243
SRM 29

plots 44
storage

LRU algorithm 51
STORAGE CRITICAL 52
storage delays 35
Storage protection 52
storage protection 302
Stored Procedure 242
stored procedures 234

application environment 246
classification rules 250
considerations 245
defining 246
desciption 242
goals 251
NUMTCB 247
server address spaces 247
service classes 251
SYSIBM.SYSPROCEDURES 247
transaction flow 248
WLM_ENV 247

structured query language 243
subsystem work managers 30
swap page-in delay 45
swap protect time 51
Syscall 284
SYSIBM.SYSPROCEDURES 247
SYSOTHER 10, 50, 253
sysplex operation 30
Sysplex PI 36
sysplex query parallelism 236, 251

assistant 252
classification rules 254

considerations 253
coordinator 252
description 236, 251
group-wide goals 253
workload classification 253
workload goals 256

sysplex routing 98
sysplex routing services 97
sysplex scope 76
SYSSTC 10, 47, 320
SYSSTC service class 178
SYSTEM 10, 47
system resources

contention 3
system scope 77
SYSZWLM_WORKUNIT 34

T
TCPIP 320
temporal affinity 260
Threads 284
transaction 6

BTE phases 72
EXEC phase 72
phases 72
response time 16

transaction class mapping file 266
transaction rate 18
transaction response time goal 298
TSO 62
TSO response time 319
TSO workload

CNTCLIST=YES 218
performance group periods 219
response time goal 218

Type 1 Resource Group 76
Type 2 Resource Group 76
Type 3 Resource Group 76
Types of resource groups 76

U
Uniprocessor considerations 311
uniprocessor systems 315
UNIX 293
UNIX system services

BPXAS 287
chpriority() 293
definition for fork and spawn 288
dubbed address spaces 290
enclave propagation 286
fork and spawn 286
goal mode 289
nice() 293
performance management 289
pthread_create 286
setpriority() 293

Unknown 14
user thinking time 15
using 14
346 System Programmer’s Guide to: Workload Manager

V
Velocity 11, 38
Velocity goals 320
velocity goals 177
VTAM Generic resources 96

W
WebSphere Application Server 324
WebSphere environment

reporting 279
When things aren’t working 187
WLC 83
WLM

concepts example 2
constructs 3
queue 92
sampling 14

WLM capping 316
WLM CDS 122
WLM functions

server address space management 91
WLM ISPF application 120
WLM Service Definition Editor 154
work classification 3
work requests

identification 3
Workload Classification Document 267
Workload Licence Charge 83
Workload License Charges 101
workload management

introduction 2
Workload Manager

concepts 2
Workload profile 262
workload profile 262
workload routing 95
workloads

sysplex query parallelism 236, 251
UNIX System Services 286

Z
z/OS dispatcher 90
zAAP 104–106, 109
zIIP 109
zWLM 323
 Index 347

348 System Programmer’s Guide to: Workload Manager

System
 Program

m
er’s Guide to: W

orkload M
anager

System
 Program

m
er’s Guide to:

W
orkload M

anager

System
 Program

m
er’s Guide to:

W
orkload M

anager

System
 Program

m
er’s Guide to: W

orkload M
anager

System
 Program

m
er’s Guide to:

W
orkload M

anager

System
 Program

m
er’s Guide to:

W
orkload M

anager

®

SG24-6472-03 ISBN 073848993X

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

System Programmer’s
Guide to: Workload
Manager

Workload Manager
overview and
functionalities

How to classify
your workloads

Best practices
samples

This IBM Redbook gives a broad understanding of the Workload
Manager component of the z/OS system. It covers basic aspects
of Workload Manager (WLM) together with the new functions
available in z/OS V1R8. The book provides a discussion about
how to create WLM policies based on business goals and the
types of transactions you run in your systems.

This book also provides information about how to implement the
WLM functions, in addition to suggestions about how to classify
different workloads to WLM so that it can best manage the
different types of units of work. You will find information for
effective performance analysis and a description of how to use
the WLM functions to achieve a better throughput in your
environment. This book also provides some best practices
samples to better understand how to set up your classification
and tune it.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Introduction
	1.1 Introduction to workload management
	1.1.1 Basic concepts
	1.1.2 Service Level Agreement

	1.2 Workload Manager components
	1.2.1 Service definition and service policies
	1.2.2 Workload classification
	1.2.3 Service classes
	1.2.4 Importance of a goal
	1.2.5 Resource Group
	1.2.6 Application Environment
	1.2.7 Scheduling environment
	1.2.8 Sampling dispatchable unit states

	1.3 Performance management metrics
	1.3.1 Processor performance metrics
	1.3.2 I/O performance and metrics

	Chapter 2. How WLM works
	2.1 Workload management
	2.2 z/OS dispatchable units (DUs)
	2.3 Understanding the algorithms
	2.3.1 Performance index
	2.3.2 Policy adjustment function
	2.3.3 CPU management
	2.3.4 Swap control
	2.3.5 Storage targets
	2.3.6 I/O management

	2.4 Transactions and management
	2.4.1 How WLM treats work in the system
	2.4.2 Enclave management
	2.4.3 Execution delay monitoring

	Chapter 3. WLM functions
	3.1 Protecting work
	3.1.1 Resource Groups
	3.1.2 CPU critical
	3.1.3 Storage critical
	3.1.4 Initiator dispatch priority
	3.1.5 WLM CPU preemption
	3.1.6 ENQ management

	3.2 Server address space management
	3.2.1 Application Environment

	3.3 Workload routing support
	3.3.1 VTAM generic resources
	3.3.2 Sysplex routing

	3.4 Soft capping
	3.4.1 Defined capacity
	3.4.2 Group capacity

	3.5 Intelligent Resource Director
	3.5.1 Linux for System z LPAR management

	3.6 Specialty processors
	3.6.1 Internal Coupling Facility Processor (ICF)
	3.6.2 Integrated Facility for Linux Processor (IFL)
	3.6.3 zSeries Application Assist Processor (zAAP)
	3.6.4 zSeries Application Assist Processor positioning
	3.6.5 WLM zAAP DUs states
	3.6.6 z9 Integrated Information Processor (zIIP)
	3.6.7 z9 Integrated Information Processor positioning
	3.6.8 WLM zIIP DU states

	Chapter 4. Implementation and workload classifications
	4.1 Overview
	4.2 WLM implementation
	4.2.1 IEAOPTxx usage
	4.2.2 WLM ISPF application
	4.2.3 WLM couple data set management
	4.2.4 Specifying your service definition
	4.2.5 Service policy definition
	4.2.6 Workload specification
	4.2.7 Resource Group specification
	4.2.8 Working with service classes
	4.2.9 Classification rules
	4.2.10 Service definition coefficient
	4.2.11 Report class
	4.2.12 Application Environment
	4.2.13 Scheduling environment
	4.2.14 Policy overrides
	4.2.15 How to use policy overrides
	4.2.16 Evaluating your SMF records
	4.2.17 Installing and activating your service definition

	4.3 Current WLM users upgrading to a new OS
	4.3.1 WLM compatibility and coexistence
	4.3.2 WLM enhancements matrix

	4.4 WLM tools
	4.4.1 Service Definition Formatter
	4.4.2 WLM Work Queue Viewer
	4.4.3 WLM Service Definition Editor

	Chapter 5. Setting goals
	5.1 Using service classes
	5.2 Defining and maintaining service goals
	5.2.1 Using historical data to set goals
	5.2.2 Using response time goals
	5.2.3 Using response time goals for CICS and IMS
	5.2.4 Using execution velocity goals
	5.2.5 Using the SYSSTC service class
	5.2.6 Using service class periods
	5.2.7 Using importance levels
	5.2.8 Using discretionary goals
	5.2.9 Using report classes
	5.2.10 Using Resource Groups
	5.2.11 Using CPU and storage critical

	5.3 Managing service definitions
	5.3.1 Revisiting service definitions
	5.3.2 Reevaluating service definition
	5.3.3 When things are not working

	Chapter 6. Batch considerations
	6.1 General considerations
	6.1.1 WLM-managed initiators
	6.1.2 Scheduling environment
	6.1.3 TWS integration with WLM

	6.2 Types of goals
	6.2.1 Response time goal
	6.2.2 Velocity goal

	6.3 Classification rules
	6.4 Best practices
	6.4.1 WLM-managed initiators
	6.4.2 Quiescing a batch job
	6.4.3 Choosing the right velocity
	6.4.4 Usage and number of periods

	6.5 Resource Group usage
	6.5.1 First test case
	6.5.2 Second test case

	6.6 Impact of the number of engines on velocity
	6.6.1 First case results
	6.6.2 Second case results

	Chapter 7. TSO, STC, and APPC workloads
	7.1 General considerations for TSO
	7.2 Types of goals for TSO
	7.3 Best practices for TSO
	7.4 Classification rules for TSO
	7.5 Reporting for TSO
	7.6 General considerations for STC
	7.7 Classification rules for STC
	7.8 Types of goals for STC
	7.9 Best practices for STC
	7.10 Reporting for STC
	7.11 General considerations for APPC
	7.12 Classification rules for APPC
	7.13 Types of goals for APPC
	7.14 Best practices for APPC
	7.15 Reporting for APPC

	Chapter 8. DB2 workload considerations
	8.1 General considerations
	8.2 DB2 address spaces
	8.2.1 DB2 address space velocity goals
	8.2.2 WLM bufferpool management
	8.2.3 How DB2 assigns I/O priorities

	8.3 DB2 distributed environment
	8.3.1 Thread and enclave relationship
	8.3.2 Duration of an enclave
	8.3.3 DDF enclave creation
	8.3.4 Classification rules for a distributed environment
	8.3.5 Types of goal
	8.3.6 Best practices
	8.3.7 Enclave reporting

	8.4 DB2 Stored Procedures
	8.4.1 What are stored procedures
	8.4.2 WLM considerations for DB2 Stored Procedures
	8.4.3 WLM definition for DB2 Stored Procedures

	8.5 DB2 sysplex query parallelism
	8.5.1 Query parallelism
	8.5.2 How sysplex query parallelism works
	8.5.3 WLM considerations for sysplex query parallelism
	8.5.4 WLM definition for sysplex query parallelism

	Chapter 9. WebSphere Application Server workload considerations
	9.1 General considerations
	9.2 WebSphere on z/OS and WLM
	9.2.1 Queuing services
	9.2.2 Enclaves
	9.2.3 Application Environments

	9.3 Classifications rules
	9.3.1 Classification rules for STC subsystem
	9.3.2 Classification rules for CB subsystem

	9.4 Types of goals
	9.5 Reporting

	Chapter 10. UNIX System Services considerations
	10.1 General considerations
	10.1.1 Unix System Services terminology
	10.1.2 Unix System Services address spaces
	10.1.3 USS and WLM

	10.2 Controlling the performance of your USS work
	10.2.1 Types of goals and classification rules
	10.2.2 Control using UNIX functions

	10.3 Reporting

	Chapter 11. Transactional workload considerations
	11.1 General considerations for CICS
	11.2 Types of goals
	11.2.1 Region management goal
	11.2.2 Transaction response time management

	11.3 Classification rules
	11.4 CPU contention considerations
	11.4.1 CICS and batch jobs contention analysis
	11.4.2 CICS regions contention analysis
	11.4.3 CICS response time contention analysis
	11.4.4 Contention analysis summary

	11.5 Reporting
	11.5.1 Reporting enhancement

	Chapter 12. Uniprocessor considerations
	12.1 CPU contention in a uniprocessor system
	12.1.1 Dispatching priorities
	12.1.2 Test case

	12.2 Recommendations
	12.2.1 Number of service classes
	12.2.2 Goals
	12.2.3 SYSSTC
	12.2.4 CPU Critical
	12.2.5 Discretionary work

	Chapter 13. Enterprise Workload Manager
	13.1 Introduction to EWLM
	13.1.1 EWLM and zWLM policies
	13.1.2 Platform support in EWLM 2.1

	13.2 Getting started
	13.2.1 How EWLM interfaces with z/OS

	13.3 Using the EWLM Control Center
	13.3.1 Monitoring the use of the EWLM Control Center

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

